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INTRODUCTION
Mastery of emerging technologies 
ranging from quantum computing 
to energy storage depends on our 
ability to precisely control materials 
at ever smaller length scales[1–3]. The 
central tenet of materials science is 
that the hierarchy of structure and 
chemistry – from the atomic to the 
macroscale – gives rise to properties 
and determines functionality[4,5]. 

Traditionally, low-resolution processing 
and characterization approaches 
have been sufficient to incrementally 
improve materials performance. 
However, today’s high-performance 
materials contain active device regions 
encompassing just a handful of 
atoms, necessitating both exceptional 
resolution and precision throughput 
in synthesis and processing. For 
example, the active layers of modern 
transistors are now single nanometer 
scale[6,7], while emerging donor qubits 
for quantum computing operate on 
the basis of single donor impurity 
atoms[1]. As we seek to further improve 
performance, we must move toward 
increasingly powerful ways to measure 
and manipulate materials.

With this goal in mind, the materials 
community has developed increasingly 
elaborate synthesis methods and 
approaches to observe materials 
in near-operating conditions[3,8–10]. 

Synthesis of nanomaterials can 
be conducted using a variety of 
approaches, with some of the most 
powerfully precise being chemical 
and physical vapor deposition 
techniques[11,12]. These approaches 
are particularly well suited to crafting 
precise, small volumes of materials 
such as thin films for electronic, optical, 
and magnetic devices. Molecular 

beam epitaxy (MBE) and pulsed 
laser deposition (PLD), for example, 
enable exquisite control of reactants 
to achieve a desired synthesis product. 
However, these methods are highly 
nonequilibrium in nature due to 
kinetic limitations, substrate effects, 
and the energetics of adsorbed species, 
often resulting in significant deviations 
from idealized target structures[13,14]. 
Atomically precise characterization 
thus plays an important role in 
benchmarking, interpreting, and 
providing critical insight into materials 
synthesis processes[2]. Furthermore, 
such characterization is essential to 
understand ordering mechanisms, 
defect formation, and phase 
transformations, all of which give rise 
to emergent properties.

There are few methods that can 
rival the ability of electron microscopy 
to simultaneously probe materials 
structure, chemistry, and defects at 
high spatial resolution. Over the past 
several decades, transmission electron 
microscopy (TEM) has emerged as 
a cornerstone of materials science, 
providing an unparalleled window into 
the formation of materials, including 
property-defining defects[15,16], the 
nature of order-disorder phase 
transitions[2,17], and the emergence 
of local electronic and magnetic 
order[18–20]. Strongly interacting 
electron probes offer high-resolution 
insight into crystallography, 
composition, bonding, phase, kinetics, 
and electromagnetic response, 
often simultaneously[3, 21, 22]. The 
proliferation of aberration- correction, 
increasingly stable and powerful 
instrument platforms, and advanced 
in situ capabilities has cemented the 
role of this “synchrotron in a box” in 

laboratories worldwide[23–26]. With every 
successful material mystery unraveled 
with TEM, there are also opportunities 
for development. Alongside the steady 
pace of hardware innovations, the 
proliferation of artificial intelligence 
(AI) and machine learning (ML) in other 
scientific domains has begun to spill 
over into microscopy[27–31]. AI/ML agents 
that can tirelessly and effectively detect 
latent associations in high volume 
data streams are beginning to replace 
slow and difficult to reproduce manual 
approaches[32,33]. More importantly, 
self-driving instrumentation is now 
becoming possible through the 
use of programmable instrument 
controllers[34–36] and human-like ML 
reasoning[37–39]. These methods will 
allow us to finally harness the full array 
of rich data at our disposal, unlocking 
previously impossible experimentation 
across spatial, chemical, and temporal 
scales.

Here we review a selection of our 
recent high-resolution and AI-guided 
electron microscopy studies of the 
synthesis, emergent properties, and 
evolution of nanomaterials. We discuss 
prior analytical successes driven by 
cutting-edge hardware developments 
and the potential for self-driving, 
autonomous microscopy based on 
reconfigurable, centralized instrument 
controllers. We show how multimodal, 
physics-based microscopy can reveal 
powerful new insights into materials 
formation, property-defining defects, 
and the interaction of energy with 
matter. We conclude with a discussion 
of emerging ML capabilities for 
intelligent analytics, control, and 
forecasting. We argue that these 
developments are propelling electron 
microscopy and materials science into 
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machine learning (ML) approaches we 
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and scalable experimentation. 
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a more reproducible and informative 
era.

 
DISCUSSION
We have organized this focused 
review into four topical areas, 
with a particular emphasis on the 
design and behavior of oxide-based 
nanomaterials. These materials play 
a critical role in technologies ranging 
from quantum information science 
to energy storage, and their lessons 
are generalizable to all classes of 
materials. First, we focus on precision 
design of functional oxides, which 
is extremely challenging due to the 
highly nonequilibrium nature of the 
associated synthesis approaches. Next, 
we describe efforts to understand 
the processing and degradation of 
oxides, which find use in extreme 
environments of deep space, nuclear 
reactors, and high temperatures. We 
then describe our efforts to create 
an atomic taxonomy via sparse data 
analytics, which are particularly well 
suited to electron microscopy. Finally, 
we discuss our platform for automated 
scanning TEM (STEM) utilizing a task-
based, centralized communications 
platform. We explore the possibility of 
incorporating human-like reasoning 
into automated experiments 
and comment on the emerging 
autonomous future of microscopy.

UNDERSTANDING THE EMERGENCE 
OF ORDER IN THIN FILM OXIDES
Many of today’s most important 
technologies depend on precise 
control of oxide thin film materials. 
Their unique structure and chemistry 
give rise to important properties, such 
as catalytic behavior, conductivity, 
and magnetism[40,41]. However, the 
synthesis of oxide interfaces is often 
kinetically limited and subject to 
substrate constraints, leading to 
many deviations from ideal, target 
structures. Our ability to achieve 
specific functionality thus depends 
on measuring and understanding 
synthesis products at high spatial and 
chemical resolution, a task uniquely 
suited to STEM. Here we consider two 
examples of prior work in this area, 
including understanding dynamic 
rearrangement during growth and 
nanoscale phase separation.

Oxide thin film synthesis takes 
place in complex conditions of 
elevated temperature (500-1200°C), 
energetic adatom species, and highly 
reactive oxygen environments. 
Precise control of synthesis products 
depends on our ability to understand 
dynamic structural and chemical 
rearrangements, which are known 
to occur in many systems[14,42]. This 
rearrangement is exemplified by our 

prior studies of heterojunctions of 
polar/non-polar LaFeO3 (LFO) / SrTiO3 
(STO), which represents a potentially 
valuable system for photochemical 
water splitting[13,43]. Past work has 
shown that the termination of the LFO/
STO interface affects its band structure 
and resulting catalytic activity[44]. 
However, preparation of different 
terminations of STO (either SrO- or 
TiO2-terminated), followed by MBE 
growth of LFO, results in very similar 
electronic structures for the final 
interface. To investigate this behavior, 
we examined the final heterojunctions 
using high-resolution STEM. As shown 
in Figure 1, STEM can directly resolve 
the excellent quality and crystallinity of 
the resulting interface. In particular, we 
observed similar profiles for chemical 
intermixing and no extended structural 
defects in either case. Using electron 
energy loss spectroscopy (EELS), we 
were able to examine the behavior of 
various alloying elements, finding that 
in both cases the final heterojunction 
assumes a LaO/TiO2 configuration. 
EELS provides rich information on 
projected local density of states, as it 
probes inelastic core loss transitions 
encountered by the incident electron 
wave as it passes through the crystal. 
This measurement informed density 
functional theory (DFT) calculations, 
which indicated that the formation 

of a FeO2/SrO configuration was 
energetically quite unfavorable. Our 
calculations suggested that, under the 
growth conditions used, Sr dissolution 
into the bulk of the film could lead 
to rearrangement of the interface. In 
essence, despite having two distinct 
starting states, the end product was the 
same. These measurements showcase 
the strength of STEM to simultaneously 
resolve structure and chemistry, 
unlocking local mechanisms to guide 
more precise synthesis.

While structural and chemical defects 
are often concentrated at interfaces, 
they may also emerge later in growth. 
For example, the buildup of strain 
imparted by a substrate in a growing 
material can lead to eventual defects 
in the form of misfit dislocations or 
phase separation[45]. Alternatively, the 
buildup of charge associated with 
polar/non-polar interfaces may also 
drive materials to undergo nanoscale 
phase separation, as shown for 
nickelate oxides[46]. Observation of 
such phase separation is challenging 
using conventional X-ray diffraction 
(XRD) approaches, which lack 
sufficient lateral spatial and chemical 
resolution to uniquely identify local 
and aperiodic defect configurations. 
We examined this behavior in 
the double perovskite La2MnNiO6 
(LMNO) on STO, which exhibits 
valuable magnetic properties directly 
tied to cation ordering and phase 
purity[15,47]. We initially observed that 
ordering in this material was strongly 
influenced by the incorporation of 
oxygen during growth; the presence 
of oxygen vacancies can, in turn, 
affect cation ordering and magnetic 
properties. However, upon more 
detailed investigation, we observed the 
onset of nanoscale phase separation 
1-5 nm into the growth. As shown 
in Figure 2, these regions exhibit a 
unique lattice-matched structure and 
appear to consist of largely NiO that 
has separated from the LMNO matrix. 
From STEM annular bright field (ABF) 
imaging, it is possible to resolve the 
direct atomic configuration of both 
light and heavy elements between 
precipitate and matrix, yielding rich 
insight into the defect formation 
process. These observations again 
informed DFT calculations, which 
suggested that the buildup of a 
polar discontinuity during growth 
leads to initial phase pure growth, 
followed by phase separation into NiO. 
Importantly, using local STEM, we are 
able to effectively detect the presence 
of these defects, measure their spatial 
distribution, and determine their 
configuration to build more accurate 
models for the synthesis process.

CHARTING THE PROCESSING OF 
NANOSTRUCTURED MATERIALS
Beyond simply synthesizing 
nanostructured oxides, it is also 
important to understand their 
processing and evolution in complex 
and extreme operating conditions. 
Many technologies, ranging from solid 
oxide fuel cells (SOFCs) to sensors 
and spacecraft, expose materials to 

FIGURE 1 
Dynamic Interface 
Rearrangement. Cross-
sectional EELS analysis 
of LaFeO3 grown on 
two different starting 
surfaces of SrTiO3 
results in very similar 
final heterostructures 
due to dynamic 
rearrangement. 
Reproduced from 
Spurgeon et al.[13] 
with permission of 
the American Physical 
Society

FIGURE 2 
Nanoscale Phase 
Separation. Charge 
buildup during the 
growth of La2MnNiO6 
double perovskites 
leads to nanoscale 
NiO phase separation, 
as measured by 
inverted STEM 
annular bright field, 
leading to a solution 
for the interface 
configuration. Adapted 
from Spurgeon et al.[15] 
with permission of 
the American Physical 
Society

Data-driven microscopy
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FIGURE 3 Chemical 
Analysis of Interfacial 
Disorder. EELS 
measurements of 
an La2Ti2O7/SrTiO3 
interface before 
(A–C) and after (D–F) 
irradiation, showing 
both the preservation 
of an interfacial 
crystalline region and 
formation of extensive 
oxygen vacancies. 
Adapted from Spurgeon 
et al.[49] under CC.-
BY-4.0 license.

measurements showed the formation 
of extensive oxygen vacancies, as 
manifested by changes in the Ti L2,3 and 
O K edge fine structure, despite the 
appearance of crystalline order. These 
findings informed DFT calculations for 
the energy of formation of defects for 
different interface configurations. In 
particular, our modeling showed that 
the interface has a higher energetic 
barrier to form oxygen vacancies than 
the bulk of either LTO film or STO 
substrate, suggesting that it will be 
last to disorder, in agreement with 
our experimental observations. These 
findings highlight the important role of 
interface configurations in mediating 
not just properties, but also radiation 
response and lifecycle of functional 
materials.

While ex situ studies of irradiation 
are powerful, it is well known that the 
evolution of radiation induced defects 
is highly transient and that studies 
of end products provides only partial 
mechanistic insight[8,52,53]. Much of 
our understanding of radiation effects 
in nanomaterials can be improved 

extreme environments of temperature, 
pressure, and irradiation. Thin film 
oxides represent an excellent testbed 
to explore the coupling between 
processing, defects, and functionality, 
but they have previously received 
little attention. STEM analysis again 
provides an excellent probe to 
examine the unique characteristics 
of local environments that mediate 
the interaction of the host lattice with 
outside radiation. Here we review two 
examples of our prior work in this 
area, examining the role of interface 
configuration on radiation response 
and dynamic percolation of disorder in 
these materials.

As already discussed, interface 
configurations play an important 
role in determining the functionality 
of thin film heterostructures. These 
regions of a material often contain 
distinct structures, chemistries, and 
defects that mediate properties. While 
interfaces have been widely studied 
in metals by the radiation effects 
community as potential sources and 
sinks of radiation-induced defects[48], 
model oxide interfaces have received 
far less attention. We have and others 
have studied the unique behavior of 
pyrochlore oxide interfaces[49–51], which 
are useful in both devices and nuclear 
waste storage. In particular, we have 
examined the La2Ti2O7 (LTO) system 
grown on STO and subjected it to 
controlled ex situ ion irradiation with 
1 MeV Zr+ ions. Using high-resolution 
STEM imaging and diffraction, we are 
able to assess the spatial evolution of 
radiation damage in these materials. 
As shown in Figure 3, we observe 
extensive amorphization in the bulk 
of the film and substrate, but also 
the the preservation of a distinct 
crystalline interface region in these 
materials. We utilized EELS to probe 
the chemical environment associated 
with radiation-induced defects in 
the vicinity of the interface. Our 

by real-time observation of defect 
evolution[54]. To address this gap, we 
examined a model LaMnO3 (LMO) / 
STO system using the I3TEM system 
at Sandia National Laboratories. This 
microscope is a highly modified JEOL 
2100 TEM, with the capability of 
introducing a MeV-energy level ion 
irradiation source in situ. In contrast to 
the polycrystalline or nanostructured 
materials commonly examined using 
this microscope, model thin film 
oxides provide a controlled interfacial 
structure that can be precisely oriented 
relative to the ion beam.

As shown in Figure 4, high-
resolution TEM (HRTEM) can be used 
to visualize the starting interface and 
its progression under irradiation over 
approximately 40 minutes to a total 
fluence of 6.25 × 1014 Au4+ cm−2. 
We examined raw images and also 
measured changes in crystallinity, 
using time-resolved Fourier filtering 
of Bragg reflections corresponding to 
the film lattice planes. This approach 
allowed us to visualize the initial, 
largely crystalline microstructure and 

the percolation of disorder in the 
vicinity of the interface. We observed 
that disorder first emerges at the 
center of the LMO film, in the form of 
local dislocations, and subsequently 
progress to the film-substrate interface. 
The initial rate of disorder is slow, with 
just 5% of crystallinity lost in the first 
five minutes, but it soon accelerates 
to nearly 15% loss between nine and 
19 minutes. At this point, the disorder 
appears to plateau, with a further drop 
in crystallinity by 40% at the end of 40 
minutes.

Our direct observations revealed a 
complex percolation and breakup of 
the material, beginning away from 
the interface and progressing toward 
it. These results again informed DFT 
calculations of defect energies, which 
showed the propensity for LMO to 
disorder before STO, as observed 
experimentally. More broadly, these 
results speak to the powerful local 
information that in situ TEM can 
provide, helping us to understand 
the dynamic evolution of materials in 
extreme environments.

A B

Data-driven microscopy

FIGURE 4 
Nanoscale Percolation 
of Disorder. In 
situ HRTEM and 
time-resolved Fourier 
filtering reveal 
pathways for disorder 
during irradiation 
of LaMnO3 /SrTiO3 
interfaces. Reproduced 
from Matthews et 
al.[55] under CC.-BY-4.0 
license.
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BUILDING THE ATOMIC TAXONOMY
As the preceding sections have shown, 
today’s microscopes are capable of 
generating immense volumes of 
simultaneous multimodal imaging, 
spectroscopic, and diffraction data. 
However, it is presently difficult for 
us to fully harness and act on such 
data using conventional analysis 
approaches, which cannot scale and 
are prone to irreproducibility because 
of their human-in-the-loop design. ML 
methods can potentially analyze data 
in a more reproducible, holistic, and 
semantically meaningful way to extract 
relevant materials descriptors[27,30,33]. 
Until recently, these methods have 
been developed in other domains, 
and they lack tuning to make them 
suitable for electron microscopy. We 
must consider specific characteristics 
of microscopy data, including data 
sparsity, a lack of high-quality training 

data, noisy acquisitions, and the strong 
dependence of the imaging function 
on instrument parameters.

We have specifically chosen to 
address the challenge of data sparsity, 
which is a major barrier to the adopt 
of ML in microscopy. As convolutional 
neural network (CNN) algorithms 
continue to push computer vision (CV) 
tasks to unprecedented performance, 
the community has begun to realize 
that these data hungry models are 
difficult or impossible to implement 
in scientific domains[56]. The high cost 
of data annotation[57], necessary for 
model training, creates a brittleness 
in traditionally trained architectures 
that causes performant models to 
fail on out-of-distribution samples. 
Specifically, there is a need for 
high-performance models that can 
accommodate real-world scenarios 
with few to no annotations. This need 

has led to development of few-shot 
learning approaches, which rely on 
an extremely limited amount of prior 
information—even one or two data 
points[58,59]. The ability to analyze data 
sets in the presence of limited training 
data, as is the case for transient, 
unstable, or novel materials, is an 
important frontier in materials and 
data science[32]. As shown in Figure 5.A, 
we have recently developed a flexible 
few-shot approach that leverages the 
sparse labeling paradigm to quickly 
describe and locate regions in electron 
micrographs[39]. In this approach, a 
larger microstructure is first broken 
down into semantically meaningful 
features known as chips, which may 
encompass atomic-scale motifs, 
particles, or grains, for example. These 
chips are passed through a previously 
trained encoder and then compared 
against canonical examples via a 

metalearner. The result is a chip level 
and task-based segmentation of the 
image, with associated statistics on 
classes of interest. This model does not 
require any retraining between tasks 
and can be effectively scaled to large 
volumes of data. Most importantly, 
the model can be quickly adapted to 
account for new information, taking 
mere seconds to select new support 
sets, compared to hours of traditional 
hand labeling.

Alongside this model, we have 
developed an intuitive graphical 
user interface (GUI) to aid in training 
and applying a model to new data 
sets, as shown in Figure 5.B. Often, 
research is primarily focused on 
model development but not its actual 
deployment into day-to-day workflows. 
The best-case scenario at present is 
typically a Jupyter Notebook or Google 
Collab distribution. However, these 
implementations are often difficult to 
use due to complicated dependencies, 
their notebook-style execution, and 
poor runtime performance. A GUI 
can improve model trustworthiness 
and explainability, as the images 
displayed at each stage of the model’s 
training and inference are easily 
interpreted by a microscopist, and can 
give much needed context to values 
such as accuracy and uncertainty[60]. 
While our model only requires a few 
examples of each feature type, there 
are several preprocessing steps that 
must be performed to prepare these 
example sets[39]. One step involves 
identifying a good chip size based on 
the size of features in the image. The 
GUI eliminates the trial-and-error in 
this step by providing the user with a 
slider, which dynamically updates the 
size of a grid of chips overlaid on top 
of their image. Another step involves 
identifying the location of feature 
examples within the image. The GUI 
facilitates this by allowing the user to 
click on a chip containing a feature 
to add it to (or remove it from) an 
example set[60]. This GUI significantly 
improves the accessibility of the 
few-shot model to microscopists, while 
increasing its interpretability and 
explainability.

The ability to curate large amounts 
of data is one facet of next-generation 
electron microscopy, but copious 
data without informed collection is 
also a valid concern, especially when 
machine learning algorithms are based 

FIGURE 5 
Sparse Analytics for 
Material Descriptors. 
Emerging few-shot 
ML can rapidly 
perform triaging and 
classification of SrTiO3 
/Ge interfaces by task 
(A), using a GUI that 
enables dynamic and 
transparent model 
operation (B). Adapted 
from Akers et al.[39] and 
Doty et al.[60] under 
CC.-BY-4.0 license.

FIGURE 6. 
Sparse Data-Guided 
Automated 
Microscopy. 
Centralized 
instrument control 
and on-the-fly 
analytics enable 
automated 
experimentation. 
(A–B) Pre-defined 
search grids 
provide statistical 
overviews of MoO3 
nanoparticles, which 
can be automatically 
analyzed by task. 
(C) Analysis results 
then drive adaptive 
searches for specific 
features of interest. 
Reproduced from 
Olszta et al.[35] under 
CC.-BY-4.0 license.

A B

A

B

C

Data-driven microscopy
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upon user-provided ground truth. 
Our research group has developed 
protocols coined Nanocartography, 
which provide microscopists with a 
toolbox to bridge the gap between 
reciprocal space and real space[61–64]. As 
previously noted, control of the stage 
has often been an overlooked feature 
in the materials electron microscopy 
community, most likely owning to the 
highly site-specific nature of sample 
analysis. Predictive and precision 
control of the stage are necessary for 
performing large area montaging, 
but as well for tilting experiments. 
Coupling tilting in real space (e.g., 
morphological examinations and 
interfaces) to reciprocal space 
(diffraction) provides microscopists 
with the ability accurately plan 
and direct microstructural and 
microchemical examinations. It has 
long been known that investigation 
of grain boundaries are highly 
dependent upon correct orientation 
whether towards the appropriate 
detector[65]. Nanocartography 
provides the ability to intelligently 
assess crystallographic orientation 
with respect to the physical features 
within a sample as well as the stage. 
Knowledge of these relationships also 
allows for rapid re-analysis of samples 
because orientation can be recalled. 
Automation of oblique tilt series 
(i.e., tilt series where the feature of 
interest is not aligned with the alpha 
or beta axis) can be programmed 
to assess three-dimensional nature 
of the sample without destructive 
analysis and other limitations of full 
tomography. Finally, adoption of this 
protocol will promote collaboration 
between labs, since users can readily 
share mapping information of various 
samples, thereby reducing expensive 
costs associated with re-exploration of 
existing samples.

MOVING TOWARD THE 
AUTONOMOUS FUTURE
With the convergence of high-
resolution analysis capability and 
bespoke ML, we are now increasingly 
moving toward completely 
automated, AI-guided microscope 
architectures[31,35]. As already discussed, 
models that replicate human-like 
reasoning are only one part of these 
architectures; we must also develop 
centralized controllers to collect data 
and implement decision-making. 
As an example, we can consider 
automated montaging of large 
statistical volumes of material, which 
is useful for understanding synthesis 
products, failure mechanisms, and 
the evolution of materials in situ. At 
its simplest, automated montaging 
should provide a scientist user with 
modifiable settings to dictate the 
number of images to be taken over a 
given area. While this technology exists 
on other instruments, such as scanning 
electron microscopes (SEMs), arbitrary 
task-based, self-driving montaging is 
presently unavailable in the STEM.

To address this challenge, we have 
developed an automated instrument 
architecture called AutoEM based on 

asynchronous, centralized control 
of a JEOL GrandARM-300F STEM 
instrument[35]. We implement a 
new low-level Python application 
programming interface (API), called 
pyJEM, which allow us to both issue 
instrument commands and read 
out data[66]. As shown in Figure 6, 
this platform enables various new 
automated analysis modes. We 
consider an example analysis of 
MoO3 nanoparticles, a transition 
metal oxide of significant interest 
as an energy storage material, 
photocatalyst, and adsorbant due 
to its tunable nanostructure[67]. 
The ability to synthesize desired 
morphologies (typically plates or 
rods) is essential, as large surface 
areas play a key role in catalysis, and 
statistical analysis can inform improved 
nanoparticle processing. In open-loop 
experimentation (Figure 6.A), a user 
can identify an area of interest and 
the automated platform will image 
this region, sending over the final 
montage to a few-shot ML model 
trained to distinguish particle features. 
At this point, the model can branch to 
different tasks, such as distinguishing 
all particles from the background 
or distinguishing different particle 
types (Figure 6.B). Finally, the system 
can automatically identify and drive 
to features of interest determined 
by the few-shot analysis, as shown 
in Figure 6.C. AutoEM allows for 
increased throughput, repeatability, 
and improved statistics over manual 
data collection, informing important 
synthesis and processing outcomes.

Equipped with a centralized 
instrument controller, we can now 
implement more sophisticated ML 
analytics for on-the-fly decision-
making during in situ studies. We 
have recently explored predictive ML 
for forecasting of chemical reactions 

in the microscope. Based on a type 
of recurrent neural network (RNN), 
long short-term memory models 
(LSTMs) have found use in prediction 
of video data[68]. Despite their power, 
these models have not yet been 
applied to in situ reactions in the TEM, 
where they might inform automated 
decision- making. We have developed 
a specialized LSTM model for EELS 
data, called EELSTM, that allows us to 
predict the future state of real-time 
reduction of STO[69]. As shown in 
Figure 7, this model can describe an 
entire core-loss EELS spectrum with 
exceptional accuracy relative to ground 
truth experimental data. Since the 
core-loss region encodes information 
about oxidation state and bonding, it 
is a powerful indicator of local defects 
formed at different stages of materials 
processing[9]. EELSTM uses prior 
spectra to predict a future spectrum 
and could provide necessary predictive 
capabilities for automated instrument 
control in AutoEM. Alternatively, this 
model may be used to artificially run 
reactions to completion to further 
augment the temporal resolution of a 
given experiment. More broadly, this 
model shows the power of the modular 
AutoEM system to incorporate various 
analytic engines, depending on the 
desired task.

 
CONCLUSIONS
The science of atomic-resolution 
electron microscopy has illuminated 
fundamental mechanisms for 
materials synthesis and processing 
that would otherwise go unnoticed. 
It has become a mainstay of modern 
materials science, chemistry, and 
physics, continuing to inform our 
mechanistic understanding of 
processes that underpin emerging 
technologies. As we have shown, TEM 
imaging, spectroscopy, and diffraction 

can richly probe the complex defect 
pathways for materials formation and 
degradation. These methods allow us 
to better understand how materials 
will evolve in complex, harsh operating 
environments, leading to improved 
materials design and performance 
lifecycles.

The field of materials science and 
microscopy are collectively in the midst 
of transformation. While previous 
approaches remain valuable, emerging 
AI/ML will reshape how scientific 
experimentation is conducted. Our 
early work has shown that machine 
intelligence can better harness 
existing data and unlock powerful 
new types of experiments. These 
approaches can lead to more accurate 
and comprehensive models for 
materials synthesis and processing. 
Nonetheless, it is increasingly clear 
that hardware developments must be 
accompanied by more agile and open 
software development. Reconfigurable 
and modular instrumentation 
ecosystems, with adaptable hardware, 
programmable controllers, and 
interchangeable analytics, represents 
the future of electron microscopy. 
These new ecosystems will improve 
reproduciblity and permit broad 
dissemination of best experimental 
practices. Constantly updating 
instrumentation, informed by the 
latest AI/ML, will elevate the state- 
of-the-art more broadly and catalyze 
transformative discovery in the coming 
decade.

Article, and references available 
online at: analyticalscience.
wiley.com/publication/
microscopy-and-analysis 
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FIGURE 7 ML-Based 
Forecasting of 
Phase Transitions. 
Specialized LSTM 
models can accurately 
predict the future 
state of reduction in 
SrTiO3 via EELS data. 
The raw data (ground 
truth) is shown in blue 
and the prediction 
is shown in orange. 
Reproduced from 
Lewis et al.[69] under 
CC.-BY-4.0 license.
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