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Abstract 
Precise control is an essential and elusive quality of emerging self-driving transmission electron microscopes (TEMs). It is widely understood 
these instruments must be capable of performing rapid, high-volume, and arbitrary movements for practical self-driving operation. However, 
stage movements are difficult to automate at scale, owing to mechanical instability, hysteresis, and thermal drift. Such difficulties pose major 
barriers to artificial intelligence-directed microscope designs that require repeatable, precise movements. To guide design of emerging 
instruments, it is necessary to understand the behavior of existing mechanisms to identify rate limiting steps for full autonomy. Here, we 
describe a general framework to evaluate stage motion in any TEM. We define metrics to evaluate stage degrees of freedom, propose 
solutions to improve performance, and comment on fundamental limits to automated experimentation using present hardware. 
Key words: automation, control system, electron microscopy, precision, stage motion 

Introduction 
Artificial intelligence (AI), encompassing disciplines such as 
robotics, machine learning (ML), and computer vision, has be-
gun to transform the study of materials, chemical, and biological 
systems (Lalmuanawma et al., 2020; Sha et al., 2020; Batra et al., 
2021). AI allows us to richly analyze more data and discover la-
tent, multidimensional patterns that inform physical mecha-
nisms, such as those underpinning quantum computing, energy 
storage, and designer medicine (Butler et al., 2018; Schmidt et 
al., 2019; Vasudevan et al., 2019; Battineni et al., 2020). 
Electron microscopy (EM), a pillar of characterization at high 
spatial and chemical resolution, stands to benefit greatly from 
these approaches (Ede, 2021; Kalinin et al., 2022; Treder et al., 
2022). At present, most EM data collection and analysis is still 
conducted by hand, with limited subsets of data collected from 
large or rapidly changing samples. With the emergence of cus-
tomized ML techniques and inexpensive edge computing hard-
ware, it is now possible to analyze data in greater volume and 
depth. ML methods have shown success on a range of 
EM-related tasks, including segmentation (Akers et al., 2021;  
Groschner et al., 2021; Xu et al., 2021; Stuckner et al., 2022), au-
tomated instrument tuning (Xu et al., 2022), determination of 
microstructural descriptors (Laanait et al., 2016; Ziatdinov et 
al., 2017; Dan et al., 2022; Ziatdinov et al., 2022a), and in 
situ forecasting (Lewis et al., 2022). These methods are now be-
ginning to grapple with the large volumes of data produced by 
modern detectors, yielding richer statistical insights into import-
ant chemical and materials systems (Spurgeon et al., 2021). 

While new approaches for EM data analysis have been 
developed, their on-the-fly implementation on microscope 
hardware has been far slower. This situation is starting to be 
improved with the release of interactive programming modules 
(e.g., Python), which will eventually lead to findable, 
accessible, interoperable, and reusable (FAIR) microscopy 
(Wilkinson et al., 2016; Schorb et al., 2019; Kalinin et al., 
2021). In the past, users were limited by the constraints of com-
mercial software and analytical routines provided by each 
microscope or detector. Recently, there have been some not-
able successes in the development of more open microscope 
platforms and controllers, including systems driven by 
Gaussian process optimization (Liu et al., 2022; Ziatdinov et 
al., 2022b) and our own modular platform based on sparse 
data analytics (Olszta et al., 2022). In all cases, numerous de-
cisions must be made regarding imaging conditions, sample 
movement/orientation, and detector configuration dictated 
by analytic requirements. In the most basic “open-loop” ex-
periment, these decisions are hard-coded a priori and then exe-
cuted without further adaptive feedback. While there are some 
scenarios in which an “open-loop” approach can be successful 
—such as large area, low magnification imaging of static 
samples—the approach is insufficient for most high-resolution 
imaging or in situ experimentation. To truly be useful in com-
mon experiments, a more powerful “closed-loop” approach is 
required. In this approach, the microscope system performs 
on-the-fly human-like reasoning to detect changes relative 
to control set points, such as the movement to a region of 
interest or changes in a spectrum. This first step requires 
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domain-specific analytics, which has been the topic of many re-
cent studies (Muto & Shiga, 2020; Akers et al., 2021; Ghosh et 
al., 2022; Treder et al., 2022; Stuckner et al., 2022; Ziatdinov 
et al., 2022a). However, once an instrument control decision is 
made it must be implemented precisely. Here, lack of access to 
user-directed control of the microscope poses major barriers, 
though sophisticated workarounds have been developed by 
the community (Carragher et al., 2000; Mastronarde, 2003;  
Yin et al., 2020). New microscope controllers are beginning 
to emerge that take advantage of low-level application pro-
gramming interfaces (APIs), open-source software, and fast 
computing hardware to direct decision-making (Olszta et al., 
2022; Roccapriore et al., 2022). 

With the advent of such new controllers, the community 
must now address the challenge of implementing a control 
platform that can account for both large volumes of decisions 
and potential imprecision in their execution. We have recently 
developed a centralized, asynchronous scanning transmission 
electron microscope (STEM) control platform that has al-
lowed us to evaluate challenges to self-driving “closed-loop” 
microscopy (Olszta et al., 2022). As already mentioned, there 
are many sources of imprecision in microscope control; for ex-
ample, lens voltages can drift, leading to parasitic aberrations, 
or mechanical lash can cause hysteresis in stage movements. 
In practice, this means that thousands of decisions can be 
made in the span of a few seconds and any error compounds 
rapidly. It is important to note that in any self-driving experi-
ment, errors in position will grow linearly with the number of 
movement commands. This is then compounded fivefold due 
to the number of degrees of freedom that are present with 
the transmission electron microscope (TEM) (x, y, z, α, and 
β). Even a 1% error in displacement will translate to being 
off by a full movement command after 100 steps, unless the 
motion is actively compensated. Traditionally, human opera-
tors would perform learned corrections to these errors as re-
flexive memory commensurate with years of experience. 
However, in truly automated microscopy this imprecision 
must be accounted for algorithmically. 

To aid in the development of “closed-loop” control, we 
must first consider the microscope stage, which is essential 
for reliable imaging and observation of objects along desired 
orientations. There are several key characteristics of any stage: 
freedom of movement, stability, and movement reproducibil-
ity. Freedom of movement is largely defined by the geometry 
of the microscope pole piece and the capabilities of the stage 
itself (i.e., tilt axes, in situ stimuli, and X-ray background). 
The static and dynamic stability of the stage are critical factors 
in both extreme atomic-resolution imaging, as well as during 
in situ experimentation, where an object must often be tracked 
or kept within a field of view (Zheng et al., 2015). There are 
many factors that contribute to stability, including the holder 
geometry (side entry versus internal stage), sample response, 
and column temperature, and vendors have spent a great 
deal of time optimizing stage stability. Unfortunately, the 
last characteristic, movement reproducibility, has largely 
been overlooked in the past decades, despite the fact that it 
is one of the most critical parts of emerging self-driving experi-
mentation. The ability to precisely move to and recall posi-
tions is critical for quantitative mapping, adaptive sampling, 
predictive tilting, and many other desirable experiments. 
Present automation software must perform tedious and time- 
consuming iterative correction to compensate for imprecision 
at even low magnification, or a human must be present to 

manually reposition the stage when an object leaves the field 
of view. Such correction is increasingly impractical if we are 
to move toward more automated and eventually autonomous 
microscopy. 

The development of automated TEM stage movement is 
thus predicated on a wider acknowledgement of the current 
limitations of standard holder/goniometer design. Whereas 
there are numerous research papers aimed at stage calibration 
in the scanning electron microscopy (SEM), there is little to no 
such information for TEM. We aim to contribute to the dia-
logue around the level of stage stability needed for the future 
of automation. 

Here, we provide a mathematical framework to evaluate the 
precision and accuracy of stage movement in any TEM. Our 
aim is to provide a systematic approach to evaluate stage per-
formance and identify barriers to fully automated experimen-
tation. We consider the unique characteristics of TEM stages 
and define appropriate coordinate frames of reference. We 
then perform systematic automated tests in the TEM specific-
ally, utilizing our AutoEM system to conduct large-scale data 
collection. We identify sources of error and comment on the 
considerations for a hypothetical future microscope stage, 
which will enable unprecedented new scientific discoveries. 

Results and Discussion 
The ability to accurately predict and control stage motion in 
the TEM is paramount to achieving automated experiments, 
such as montaging and tilt series. To understand present chal-
lenges, we consider typical hardware designs, shown in  
Figure 1. Montaging and stage control in EM is often associ-
ated with SEM (Fig. 1a), where movement occurs within a 
Cartesian frame of reference. Considering only translation, 
these stages generally travel linearly in the x (red arrow) and 
y (blue arrow) planes, usually along independent rails, with 
z height (or working distance) achieved by the stage moving 
linearly in the z direction (green arrow). Due to the larger field 
of view, linear stage motion, and large chamber designs, con-
siderable research has been conducted in the field of SEMs, 
with some researchers utilizing ML in montaging protocols 
to circumvent the inherent difficulties in predicting stage 
movements (Chalfoun et al., 2017). We note that others 
have utilized a variety of different methods to perform both 
image and stage calibrations in the SEM (Fu et al., 1994;  
Ritter et al., 2006, 2007; Mick et al., 2010; Kuwajima et al., 
2013; Zimmermann et al., 2013; Cui & Marchand, 2015;  
Chalfoun et al., 2017; Pang et al., 2019; Liu et al., 2022). In 
contrast, the movement of a TEM stage is often confusing be-
cause either the end of the holder is encased in a protective cov-
ering (in the case of modern microscopes) or only the end of 
the holder is visible. We have found that users typically assume 
stage movement in the TEM is linear, as is the case for the 
SEM, since movement is only observed through cameras or a 
viewing screen and controls provide linear designations. 

TEM stages in fact do not move in a linear fashion, but oper-
ate within a spherical coordinate system, as shown in Figure 1b. 
The x-axis can be considered largely linear, since the sample rod 
is pushed out by a motor (blue arrow) and the vacuum pulls the 
holder in to achieve the opposite direction, similar to the linear 
motion in the SEM. However, the complete motion of the TEM 
stage occurs within a spherical frame of reference, because the 
goniometer pushes on the ends of the holder in both the y 
(red arrow) and z (green arrow) directions. The holder then  
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pivots on an internal hemispherical bearing just inside the col-
umn, creating sample motion within a spherical coordinate sys-
tem. The combination of these three axes makes the prediction 
of stage movement far more difficult, with microscope manu-
facturers typically having already calibrated stage motion to ap-
pear to travel in a linear manner. We note that, while not shown 
in the diagram, the motion is further complicated by the add-
ition of α (rotation axis parallel to the long axis) and 
β (rotation axis perpendicular to the long axis) tilts. When con-
siderations are made for the programming of stage motion, it is 
important to understand and quantify error associated with 
such spherical motion. Additionally, while many commercial 
machines (e.g., lithographic tools and instrumentation found 
in the semiconductor industry) can operate with nm precision, 
the current stage design in most modern TEMs also depends on 
the stifness and consistency of rubber o-rings. This inherent 
variability provides a challenge to which AI combined with pre-
dictive stage movements is necessary. In addition to the variabil-
ity of the o-rings, there are many other sources of error. These 
include, but are not limited to, thermal expansion, backlash, 
hysteresis, gravitational effects, stick-slip, binding, and mech-
anical oscillations. While a full treatment of every possible 
source of error is beyond the scope of this text, this work will 
focus specifically on backlash and hysteresis. This work also fo-
cuses on experimental data acquired from TEM stages because 
of the greater complexity of the design. However, the image 
processing and alignment techniques described are independent 
of the type of microscope. 

Mathematical Framework 
We will now focus on defining a mathematical framework to 
evaluate stage movement in the TEM specifically; using the 

terms target stage position, reported stage position, and actual 
stage position as vernacular. The target position is the desired 
location, or input, as passed from the user to the microscope. 
The reported position is the location reported by the micro-
scope (note this can be further considered as the displayed 
value or “program” value) after a move command has been 
completed. The actual position is where the sample is located 
in space as measured by relative displacements between im-
ages using cross-correlation image processing techniques, as 
described in the Materials and Methods section. 

To illustrate the possible interactions between these three, 
several cases are displayed in Figure 2. The first case, shown 
in Figure 2a, is the ideal case for alignment, where all three 
terms are commensurate as desired by the user: the target, 
reported, and actual positions all agree. The remainder of  
Figure 2 illustrates cases that would be considered misalign-
ment and are representative of most modern goniometer/ 
stage control in TEM. These misalignments are divided into 
actual, reported, and target, where within various combina-
tions of the three, two of the three positions are aligned with 
the third being different (Figs. 2b–2d). The next example, 
shown in Figure 2e, illustrates the case when none of the 
positions align with each other. While all but the first of these 
situations are not ideal, if the behavior is repeatable and 
measurable, then the user can compensate for this misalign-
ment to achieve better performance using predictive algo-
rithms. This compensation is the major differentiator; the 
final case, Figure 2f, is a situation where it is not possible 
to compensate for the misalignment. This situation could 
be due to a time or state dependency, but is most likely a func-
tion of the physical state of the holder o-ring due to wear over 
time. 

Fig. 1. Overview of electron microscope stages. (a) Simplified illustration of the SEM stage and its associated linear frame of reference. (b) Simplified 
illustration of the TEM stage and its associated spherical frame of reference. SEM, scanning electron microscope; TEM, transmission electron microscope.   
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Using this nomenclature, the ideal alignment case (Fig. 2a) is 
the easiest situation where everything works as a user would 
expect. The next four (Figs. 2b–2f) can be compensated for, 
and many times are transparent to a user who is manually 
aligning features of interest. Since a regular user will only 
interact with the movement relative to the reported value, 
they can target a region of interest using experience and intu-
ition. However, these situations pose a difficulty if one would 
like to recall a feature or perform automated, repeatable runs. 
The final case is the worst, because external analysis cannot 
compensate or improve microscope behavior. With this vo-
cabulary, the misalignment cases would be considered forms 
of systematic error on the measurement. This measurement 
is distinguished from statistical error relating to noise in the 
reported value or step size. Another way of describing this 
would be to say that the ideal alignment has accuracy (meas-
ured close to the true value), as does Figure 2c. Colloquially, 
the other cases could be described as inaccurate measurements 
of the actual position. 

Hardware Testing 
Having defined these microscope/stage input parameters, as 
well as the combinatorial possibilities of all three positions, 
we conducted a set of automated experiments to understand 
and quantify stage reliability/reproducibility. This approach 
allows us to assess the feasibility of programming autonomous 

modules and also enables comparisons against stages across 
vintage, institution, company, or microscope. We specifically 
outline an analysis framework where a user can understand 
which case their microscope exhibits and what can be done 
to compensate for any misalignment that is present. 
Generally, the idea is to complete pairwise comparisons be-
tween different position measurements (target versus re-
ported, target versus actual, and reported versus actual). 
These should be evaluated with respect to both the consistency 
of measurements and whether the stage exhibits state depend-
ence. It is important to note that this can be applied to any EM 
stage and that the goal of the present study is not to perform a 
systematic evaluation of trends in microscope stages. A more 
comprehensive list of experimental considerations can be 
found in the Supplementary Section 1 and more testing results 
are in Supplementary Section 2 and Supplementary Section 3. 

To check for hysteresis on an axis, the microscope must 
make repeated moves in a direction and check to see if all 
the step sizes are the same. For the x and y directions, one 
can see the results of comparing the target and reported posi-
tions, as shown in Figure 3. For each direction, a sequence of 
five steps was taken. At each location an image was acquired 
and the reported position of the microscope noted; then a 
movement command was issued to move to the next position. 
In this figure, the difference between the reported and target 
position is plotted against the reported value for that axis. 
Generally, the agreement is fairly good, but the first step in a 

Fig. 2. Framework to analyze possible microscope alignment scenarios. (a) Target, reported, and actual positions all coincide. (b) Target and reported 
positions align, actual position is somewhere else. (c) Target and actual positions align, reported position is somewhere else. (d) Reported and actual 
positions align, target position is somewhere else. (e) None of the target, reported, or actual positions align. (f) Target, reported, or actual positions may or 
may not align in an inconsistent manner. The positions show either large statistical errors or state dependence, such as hysteresis.   
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given direction shows a smaller reported displacement than 
the target. These steps are highlighted in red, and in the over-
lapped images, these show significantly more overlap than 
subsequent steps. To demonstrate the quality of the alignment, 
images in the figure have been made partially transparent. Any 
misalignment would appear as a blurry edge. The stitched im-
ages show a characteristic hysteretic behavior that is often 
referred to as backlash. In practice, backlash is accounted 
for by overcompensating in the reverse direction by the human 
operator, but which must be explicitly programmed for in au-
tomated experimentation. If not accounted for, objects can be 
incorrectly positioned or missed and these errors will accumu-
late over the course of an automated experiment. 

Next, we check to see if movement along one axis impacts 
the measurements along a different axis, and vice versa. As 
shown in Figure 1b, movement within a TEM stage is charac-
terized by arcs, not lines. Consequently, movement in an arc 
will cause displacements in more than one Cartesian axis, 
which if not accounted for by the microscope hardware or 
software, could couple movement commands between axes. 
For completeness, one should check every possible step direc-
tion and each possible combination of two. However, in this 
study we only consider the x and y directions, because these 
are the ones most easily interrogated for actual position loca-
tion measurements using cross-correlation techniques to align 
overlapping features. In this test, linear steps along a direction 
are interspersed with perpendicular steps as the microscope 
moves along each cardinal direction, as shown in Figure 4. 
In this figure, the reported and actual positions are plotted 
for movement in each cardinal direction to illustrate the dis-
crepancies in the values. 

In general, we observe that steps along different axes do not 
significantly impact the reported locations on other ones. 
There is still hysteresis on each axis separately, so moving 

out and back does not return the microscope to the identical 
position, as can be seen with the inset microscope images. 
From the actual microscope images shown in Figure 4, it is ap-
parent that the consistency of the reported position values is 
not reproduced in the actual images. This finding also high-
lights the fact that inaccuracies at the individual step level 
can accumulate over multiple move commands to create an 
overall larger error, where the final image is not the same as 
the initial image, even if the target or reported positions are 
identical. This finding indicates that orthogonal movements 
are largely uncoupled and we can compensate for lash inde-
pendently. However, we observe that error compounds rapid-
ly and that an object being tracked can move greatly within the 
field of view unless iterative correction is applied. To summar-
ize the results of the hardware testing applied to our stage, we 
found that it shows hysteresis when changing directions and 
that the x- and y-axes are generally uncorrelated beyond 
this hysteresis. Due to the hysteresis observed in the first step 
in a given direction, there is a history dependence that makes 
general compensation of the motion to improve accuracy 
challenging. Within the general analysis framework shown 
in Figure 2, our stage is in the category of “Misalignment: 
Inconsistent” shown in Figure 2f. 

Conclusions 
Here, we have provided a general framework to evaluate stage 
movement within any TEM. We show that there is coupling 
among axes of movement in the TEM, which operates in 
a spherical coordinate system that is much more complex 
than the Cartesian system commonly understood from SEM. 
We observe several potential complications for automated 
movement within this spherical frame of reference, owing to 
coupling of axes and imprecision in mechanical motion. 

Fig. 3. Hysteresis testing for independent axes. (a) Hysteresis test for movement in the x direction. (b) Hysteresis test for movement in the y direction. 
Images were acquired sequentially along a line, and the reported position minus the target position is shown as a function of the reported position for each 
direction. Each image was acquired at 50, 000× magnification with a field of view of 3.75 by 3.75μm and has been made 50% transparent to illustrate 
overlaps.   
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Understanding this relationship is critical for emerging auto-
mated microscope systems and is particularly relevant for 
high-speed experimentation, where rapid movements must 
be made in sequence to track an object or reaction. 

The analysis framework described here provides several con-
crete pieces of information relating to TEM stage motion. 
First, we found that in general, the target, reported, and actual 
position of the microscope might disagree with each other. 
Next, we identified that the first step in a given direction shows 
different behavior than repeated steps in that direction and this 
information can be used effectively in automation experiments. 
We observed that the y-axis tended to be more stable than the 
x-axis for our particular stage, indicating that it is important to 
map the characteristics of each holder. If there is a particular 
orientation where accuracy is more important in future experi-
ments, for example, then this axis can be roughly aligned along 
the y-axis for improved performance as compared to a random 
alignment within the microscope. We emphasize that this ana-
lysis framework is general and our findings do not speak to over-
all relative performance of any specific holder design. 

In general, we conclude that active feedback on the stage 
position in relation to regions of interest is essential to achieve 
automated human-level performance using present stages. 
This feedback may be provided through software correction, 
but it is more desirable to eliminate imprecision at the hard-
ware level. It is likely that full automation will be some com-
bination of physical hardware and AI improvement. 
Currently, the reported stage position is merely inferred 
from the signal that is sent to the motors. This situation leaves 
an information gap within the system between the targeted 
and actual position, in addition to the misalignment reported 
for the system. Moving forward, we will wish to design new 
stages with precise, scalable movements, specifically incorpor-
ating independent axis control, accurate positioning feedback, 
as well as in situ stimuli needed for rich, automated experi-
mentation. Such designs will no doubt be challenging to cre-
ate, but they are an essential step toward breakthrough 
discoveries in the age of automation. This research aims to mo-
tivate wider conversation in regards to stage stability, with the 
ultimate goal of development of automated TEM platforms, 

Fig. 4. Hysteresis testing for coupled orthogonal axes. Reported and actual locations for two-axis correlation acquisitions. Each cardinal direction moves 
from the origin outward and has the images overlapped at 50% transparency to visualize the overlap. Each image was acquired at 50, 000× magnification 
with a field of view of 3.75 by 3.75μm.   
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whether through re-design of the stage or algorithms to im-
prove upon present imprecision. 

Materials and Methods 
Hardware 
The microscope used in the main text of this study is a custom-
ized probe-corrected JEOL GrandARM-300F STEM equipped 
with the AutoEM platform, that allows access and automation 
of low level controls such as magnification, tilt, and translation 
(Olszta et al., 2022). The data shown in the main text was 
acquired in STEM mode at 300 kV accelerating voltage at 
50, 000× magnification. Additional data in Supplementary 
Section 3 was acquired on a JEOL ARM-200CF microscope. 
The images were acquired in STEM mode at 200 kV accelerat-
ing voltage at 20, 000× magnification. In both cases, data pro-
cessing is performed on a separate remote Dell Precision T5820 
Workstation equipped with a Intel Xeon W-2102 2.9 GHz pro-
cessor and 1 GB NVIDIA Quadro NVS 310 GPU. A JEOL low 
X-ray background double tilt holder was utilized in these 
experiments. The exact sequence of measurements for each cal-
culation is given in Supplementary Section 1. Each microscope 
magnification was calibrated for the dimensions of the total 
field of view using a Ted Pella MAG*I*CAL® Calibration 
Standard. 

Automated Data Collection 
The automation system is composed of interlinked hardware– 
software components, as described elsewhere (Olszta et al., 
2022). HubEM acts as the main end-use application for the 
system. It serves as a point for entering configuration, storing 
data, and directing the cooperation of other components 
through inter-process communication. It is implemented in 
C#/Python and uses Python.NET 2.5.0, a library that allows 
Python scripts to be called from within a .NET application. 
PyJEM Wrapper is an application that wraps the PyJEM 
1.0.2 Python library, allowing communication to the 
TEMCenter control application from JEOL. It is written in 
Python and runs on the JEOL PC used to control the instru-
ment. GMS Python allows communication to the Gatan 
Microscopy Suite (GMS) 3.4.3. It runs as a Python script in 
the GMS embedded scripting engine. All components commu-
nicate using a protocol based on ZeroMQ and implemented in 
PyZMQ 19.0.2. 

Image Registration 
Overlapping images were aligned using a custom Python 3.7.1 
script that implements a normalized cross-correlation tech-
nique, as described in Olszta et al. (2022). In brief, the images 
were converted to grayscale, normalized to have zero mean 
pixel intensity and maximum absolute pixel intensity of 
1. The cross-correlation was computed using the SciPy 1.7.3 
library (Virtanen et al., 2020). Peak values in the cross- 
correlation were used to determine optimal alignment and 
the actual positions reported in the text. 
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