
Correlating Interfacial Structure and Magnetism in Thin-Film Oxide Heterostructures Using

Transmission Electron Microscopy and Polarized Neutron Reflectometry

A Thesis

Submitted to the Faculty

of

Drexel University

by

Steven Richard Spurgeon

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

October 2014



© Copyright 2014
Steven Richard Spurgeon.

This work is licensed under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. The license is available at
http://creativecommons.org/licenses/by-nc-sa/4.0/.

http://creativecommons.org/licenses/by-nc-sa/4.0/


ii

Dedications

This thesis is dedicated to my Lord and Savior Jesus Christ, as well as my wife,

Jennifer, and my family—without their love this work would not have been possible.

For now we see in a mirror dimly, but then face to face.

Now I know in part; then I shall know fully,

even as I have been fully known.

1 CORINTHIANS 13:12



iii

Acknowledgments

The past five years have been an immensely rewarding but formidable challenge, an emotional and

intellectual whirlwind with calm skies rarely in sight. The research presented in this thesis would not

have been possible without the support of my colleagues, friends, and family. It has been a privilege to

work with my advisor, Mitra Taheri, whose wit and wisdom have guided me throughout my work. I am

indebted to the many past and present members of our research group, including Chris Winkler, Greg

Vetterick, Ian McDonald, Chris Barr, Matt Hartshorne, Katie Jo Sunday, James Hart, and others. I am

also fortunate to have been financially supported by both NSF IGERT and DoD NDSEG Fellowships.

Knowledge is not forged in quiet isolation but in the fiery furnace of debate and criticism. I have

received guidance from many brilliant and helpful scientists, including Brian Kirby, Sam Lofland, Steve

May, James Rondinelli, Craig Jonson, Ed Basgall, Jonathan Spanier, Quentin Ramasse, Demie Kepapt-

soglou, Prasanna Balachandran, Rebecca Sichel-Tissot, Eun Ju Moon, Mark Scafetta, Babak Anasori,

Philipp Hunger, Amalie Donius, Darin Tallman, Guannan Chen, Min Hyun, and others.

The doctoral process has been tremendously humbling; it is a relentless diminishing of the self that

culminates in an acute awareness of just how much one needs others. Over the years I have come to

depend on the kindness, encouragement, and advice of my friends, who helped me move forward when

I alone could not. These include Terry Shyu, Dennis Watson, Cliff Kang, Anita Lai, Micky Kim, Emily

Schutsky, Dan Kim, Eddie and Sharon Sharick, Paul Tzen, Susie Cha, Brian Pyles, and others.

Finally, I am most thankful for the love of my wife, Jennifer, my brother, Justin, and my parents,

Richard and Brigitte. At every stage of this process they have been ceaselessly supportive and under-

standing. They filled me up after I had poured myself out time and time again, and they spurred me on

to run the race set before me. For these manifold blessings, both seen and unseen, I am eternally grateful.

Steven R. Spurgeon

Philadelphia, PA



iv



v

Table of Contents

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Spintronics and Device Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Functional Thin-Film Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Ferrous Thin-Film Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Rare-Earth Manganites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Piezoelectric Lead Titanates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Magnetoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 The Magnetoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Artificial Magnetoelectric Heterostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Magnetoelectric Coupling Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Limits of Current Coupling Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. TECHNIQUES AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Thin-Film Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 X-Ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Transmission Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



vi

3.4.2 Scanning Transmission Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Transmission Electron Microscopy Image Simulation . . . . . . . . . . . . . . . . . . . . . . 40

3.4.4 Electron Energy Loss Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.5 Geometric Phase Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.6 Scanning Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.7 Energy-Dispersive X-Ray Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Vibrating Sample Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Magneto-Optical Kerr Effect Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Polarized Neutron Reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4. INTERFACE EFFECTS ON MAGNETIZATION IN FERROUS THIN-FILMS . . . . . . . . . . . . . . . . . . . . . 60

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Sample Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Chemical Mapping of Interface Valence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Vibrating Sample Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Film Coverage During Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Oxide Formation at the Fe / MgO Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Morphology Effects on Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5. SUBSTRATE-INDUCED POLARIZATION EFFECTS IN LSMO / PZT . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Sample Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 X-Ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

TABLE OF CONTENTS



vii

5.5 Scanning Transmission Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Local Ferroelectric Polarization Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Bulk Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 Polarized Neutron Reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.9 Geometric Phase Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.10 Strain Effects on Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.10.1 Millis Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.10.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.11 Electron Energy Loss Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6. SCREENING-INDUCED MAGNETIC PHASE GRADIENTS AT LSMO / PZT INTERFACES . . . . . . . . . . . . 88

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Sample Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Electron Energy Loss Spectroscopy – O K Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Electron Energy Loss Spectroscopy – Mn L2,3 Edge . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Polarized Neutron Reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.8 Polarization Screening Effects on Valence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

APPENDIX A: STRAIN EFFECTS ON MAGNETIZATION IN FERROUS THIN-FILMS . . . . . . . . . . . . . . . . 131

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.3 Sample Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.4 X-Ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

TABLE OF CONTENTS



viii

A.5 Transmission Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.6 Structural Effects on Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.8 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

APPENDIX B: INTERFACE EFFECTS ON MAGNETIZATION IN FERROUS THIN-FILMS . . . . . . . . . . . . . . 142

B.1 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

APPENDIX C: SUBSTRATE-INDUCED POLARIZATION EFFECTS IN LSMO / PZT . . . . . . . . . . . . . . . . 144

C.1 Bulk Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

C.2 Polarized Neutron Reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

APPENDIX D: SCREENING-INDUCED MAGNETIC PHASE GRADIENTS AT LSMO / PZT INTERFACES . . . . . 154

D.1 Electron Energy Loss Spectroscopy – O K Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

D.2 Angle-Resolved X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 154

D.3 Local Mapping of Ferroelectric Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

D.4 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

D.5 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



ix

List of Tables

2.1 Magnetic ordering of various ferrous compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Piezoelectric coefficient (d33) for various compounds . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Magnetoelectric coefficients (α) measured for various single-phase magnetoelectrics . . . . . 19

2.4 Surface magnetoelectric coefficients (αS) for two kinds of charge-mediated coupling . . . . . 28

5.1 Sample thicknesses measured by TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Average LSMO strains measured by XRD relative to bulk LSMO (3.87 Å) . . . . . . . . . . . . . 75

5.3 Curie temperatures measured and estimated from the Millis et al. model using XRD . . . . . . 82

A.1 X-ray diffraction analysis of the α–Fe (002) peak. The measured c lattice parameters are
compared to the bulk value (c = 2.87 Å) to calculate the out-of-plane strain (ϵ⊥). The in-
plane strain is estimated using the Fe elastic constants as ϵ∥ =− c11

2c12
ϵ⊥ . . . . . . . . . . . . . . 133

C.1 Curie temperatures estimated from Arrott-Belov analysis, assuming the samples are self-
consistent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.2 Comparison of the theoretical and fitted nuclear scattering length densities (SLDs) from Fig-
ure C.5. Values are given in units of ×10−6 Å−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D.1 Theoretically explored LSMO compositions. The Mn atomic magnetic moments (Mnµ) are
in Bohr magnetons (µB) units. The rotation amplitude correspond to out-of-phase MnO6
rotations (a−a−a− in Glazer notation) in Ångström (Å) units . . . . . . . . . . . . . . . . . . . . 158



x

List of Figures

2.1 (A) Increase in resistance caused by increasing Cr spacer thickness, resulting from a transition
from FM to AF coupling. (B) Illustration of the GMR effect, in which a high-resistance AF
state is tuned to a low-resistance FM state by the application of an external magnetic field . . 5

2.2 Overview of the many facets of spintronics technologies. Of particular interest in this thesis
is electric field control of magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Illustration of the Fe [100](001) ∥ MgO [110](001) epitaxial growth relationship between
BCC α-Fe and MgO (001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Example of the energy surfaces for various cubic ferromagnet systems . . . . . . . . . . . . . . 9

2.5 Illustration of the LaMnO3 Pnma parent perovskite structure. La atoms are shown in red,
Mn atoms are shown in light blue, and O octahedra are shaded . . . . . . . . . . . . . . . . . . . 11

2.6 Bulk phase diagram of the La1−xSrxMnO3 system. I = Insulating, M = Metallic, PM = Para-
magnetic, FM = Ferromagnetic, AFM = Antiferromagnetic, and C = Charge-ordered phases . 11

2.7 Model of superexchange coupling in monovalent manganites. The top shows the hybridiza-
tion of O 2p and Mn 3d states, while the bottom shows ferromagnetic (a) and antiferro-
magnetic (b) spin configurations, the latter of which is lower energy because it promotes
increased 2p− 3d hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Model of double-exchange coupling in mixed-valence manganites. On-site Hund coupling
gives rise to parallel alignment of hybridized e↑g electrons, leading to long-range ferromag-
netic order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.9 (A) Spontaneous dipole formation in PbTiO3 by off-centering of the Ti4+ cation. (B, C) show
enhancement of this dipole by the application of external stress . . . . . . . . . . . . . . . . . . 14

2.10 Phase diagram of the PZT system, showing the morphotropic phase boundary (MPB) near
x ≈ 0.46, as well as the rotation of the polarization direction during the symmetry-breaking
rhombohedral-to-tetragonal phase transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.11 Illustration of coupling between a piezoelectric and piezomagnetic layer. The layer in the top
left strains under the application of an electric field. If a piezomagnetic is mechanically cou-
pled to this layer, the application of an electric field induces indirect changes in magnetizaton 20

2.12 (A-C) Illustration of the effects of various kinds of interfacial ME coupling on M−E hysteresis
behavior. (D-G) The resulting magnetic hysteresis behavior for different kinds of interfacial
coupling mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.13 Schematic of the BFO structure (in a hexagonal representation) showing tilted pairs of octa-
hedra. Green atoms are Bi ions and turquoise atoms are Fe ions surrounded by red oxygen
octahedra. Arrows indicate Mn spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



xi

2.14 Relationship between polarization, spin cycloid propagation direction, and magnetic easy
plane. A 71◦ switch from [111] to [111̄] FE polarization directions induces a switch in the
magnetic easy plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.15 Illustration of polarization-induced changes in the hysteresis of a Co layer exchange bias-
coupled to a BFO underlayer. (A-D) correspond to different in-plane polarization directions . 24

2.16 Illustration of charge accumulation (top) and depletion (bottom) states in a MOSFET de-
vice. The application of a voltage to the gate increases the effective carrier density in the
accumulation state and vice versa for the depletion state . . . . . . . . . . . . . . . . . . . . . . . 25

2.17 Calculated ground-state spin configurations for depletion (left) and accumulation (right)
states of the PZT polarization. In the former case the ordering is predicted to be ferromag-
netic, while in the latter it is predicted to be antiferromagnetic at low-temperatures . . . . . . 27

3.1 Overview of the techniques used in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Schematic of a PLD chamber, illustrating the vacuum chamber, ablating laser, target carousel,
and substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 θ − 2θ diffraction pattern from an Fe / Fe3O4 / MgO (001) thin-film heterostructure . . . . . 35

3.4 Calculated X-ray reflectivity for Au films deposited on Si substrate, illustrating the interfer-
ence of reflected beams from the multilayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Illustration of the TEM lens system showing the electron gun, focusing optics, and collection
optics, as well as optional X-ray and EELS detectors . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Illustration of the signals generated when an electron beam is incident on a thin foil sample . 38

3.7 Schematic of the incident optics in STEM mode. The C1 and C3 lenses are active, but the C2
lens is turned off. The C1 lens is used to control probe size and current, while the C2 lens
aperture is still used to control the convergence angle on the specimen . . . . . . . . . . . . . . 39

3.8 Illustration of scattering angles and annular collection apertures for a convergent STEM
probe. Scattering in excess of 50 mrad is termed high-angle annular dark field (HAADF)
or “Z-contrast” imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 STEM-HAADF image of the piezoelectric PZT, with bright Pb columns and darker Zr / Ti
columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Ge lattice images calculated using the Bloch wave approximation. The arrows indicate the
contrast resulting from the interaction of one (top arrow), two (middle arrow), and three
(bottom arrow) Bloch waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.11 Illustration of the multi-slice simulation method. The sample is first approximated by break-
ing it up into an array of “projection planes.” The incident electron beam is then passed
through the first of such planes and all the scattered beams in reciprocal space are calcu-
lated. These calculated beams are then passed through the second plane and the calculation
is repeated. This process is repeated until the beam has passed through all the slices. . . . . . 43

3.12 Schematic of an EEL spectrometer. (A) Shows the plane perpendicular to the applied mag-
netic field, with the dashed lines indicating deviations in electron paths due to energy loss.
Solid lines indicate zero-loss electrons. (B) Shows the plane parallel to the magnetic field . . 44

LIST OF FIGURES



xii

3.13 Example of an EEL spectrum, with the zero- (elastically-scattered), low-, high-loss regions
indicated. The intensity of the low-loss region is orders of magnitude higher than the higher
energy loss regions, which fall off in intensity according to a power law . . . . . . . . . . . . . 45

3.14 Elemental mapping of an La0.7Sr0.3MnO3 / SrTiO3 thin-film heterostructure interface. (A-
C) Correspond to the La M , Ti L, and Mn L edges, respectively. (D) Shows a false-color
combination of the three maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.15 Calculation of the strain field in a transistor, with the color map corresponding to the ϵx x
component of local strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.16 Schematic of the scanning electron microscope, illustrating the instrument optics, control
system, and detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.17 Illustration of the secondary electron interaction volume for increasing primary electron en-
ergy (E0) and increasing atomic number (Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.18 X-ray emission spectrum from a cauliflower. The peaks in the spectrum correspond to specific
intra-atomic transitions and can be indexed to specific elements . . . . . . . . . . . . . . . . . . 49

3.19 (A) Secondary electron image of a ferrous powder metal compact and Ni additive particle.
(B-D) Corresponding Si K , Ni K , and Fe K characteristic X-ray maps, clearly distinguishing
the Ni particle from the surrounding Fe matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.20 Schematic of a vibrating sample magnetometer, showing the reference magnet and sample.
The sample is placed in a magnetic field generated by a superconductor, permitting the ap-
plication of large fields, up to several T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.21 Illustration of the decomposition of linearly-polarized light into left- and right-circularly po-
larized modes upon refraction from a magnetized medium . . . . . . . . . . . . . . . . . . . . . 52

3.22 Schematic of the reflection of a polarized beam of neutrons from magnetized sample. (A)
shows that for uniform M parallel to the guide field H only non-spin-flip occurs, while (B)
shows that when a perpendicular component of M is introduced, spin-flip scattering occurs . 54

3.23 An example of polarized neutron reflectometry data collected at 300 (A) and 170 K (B) for
an LSMO / SRO superlattice. The resulting magnetization depth profiles are shown in the
bottom half of each figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.24 Illustration of the slab model of nuclear and magnetic scattering length density used to cal-
culate a reflectivity profile. The measured data are iteratively fit until an accurate model of
magnetic and chemical structure is attained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.25 Binding energy curve for a diatomic molecule. R0 is the bond length and 1
2
ħhω is the zero-

point energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.26 DFT-GGA calculations for a La0.7Sr0.3MnO3 / BaTiO3 / La0.5Ca0.5MnO3 / La0.7Sr0.3MnO3 het-
erostructure. (A-C) show magnetic configurations for different ferroelectric polarizations and
ground states. (D) shows the calculated metal-oxygen bond displacements as a function of
position. (E-G) are plots of the tunneling transmission in the two-dimensional Brillouin zone
for configurations A-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

LIST OF FIGURES



xiii

4.1 Sequence of bright field TEM images illustrating the evolution of Fe island morphology and
interconnectivity with increasing Fe thickness along MgO <100>, <011>, and <012> zone
axes. A-B, C-D, and E-F correspond to 10, 20, and 30 nm Fe thicknesses, respectively. Insets
show high resolution images of each Fe / MgO interface and arrows indicate the boundaries
of the Fe / MgO intermixed region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 SEM plan-view images illustrating the evolution of Fe island morphology with thickness. (A)
shows discrete, equiaxed islands. (B) shows connected, anisotropic islands, while (C) shows
the appearance of a new layer of discrete, equiaxed islands . . . . . . . . . . . . . . . . . . . . . 63

4.3 STEM-EDS maps of the intermixing of a 20 nm Fe island and the MgO substrate. From left to
right, a bright field STEM image, Fe K edge map, and Mg K edge map are shown. The region
between the dashed lines corresponds to an intermixed interface layer . . . . . . . . . . . . . . 64

4.4 STEM-EELS maps of the interface between a 20–nm Fe film and the MgO substrate. (A)
shows a series of spectra collected across the intermixed region at the points labeled in the
inset of (B). (B) shows the calculated Fe L3 / L2 peak ratios (squares) and the estimated
Fe valence (triangles) from Cosandey et al. Error bars correspond to the goodness of the
Gaussian fit to the two peaks at each spot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 In-plane magnetic hysteresis loops for 10, 20 and 30 nm Fe films (A-C, respectively) along
the Fe <100> and <110> directions. (A) shows little splitting between the two directions,
while in (C) an obvious anisotropy exists between the <100> and <110> directions. (D)
shows coercivities along <100> and <110> directions, with a peak at 20 nm . . . . . . . . . 66

5.1 X-ray reflectivities (circles) and calculated fits (solid lines) measured with Cu Kα radiation at
298 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 X-ray reciprocal space maps measured around the STO 103 diffraction condition using Cu Kα
radiation at 298 K. The LSMO 103 peak is visible in the upper-middle portion of each panel.
A diagonal analyzer streak is also visible in each of the maps . . . . . . . . . . . . . . . . . . . . 75

5.3 Symmetric θ − 2θ scans of the (001) and (002) diffraction peaks measured using Cu Kα
radiation at 298 K. The insets show detail around the (002) reflections and Kiessig fringes
are visible around the PZT (002) peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 (A, E) Illustration of the two film structures used in this study, with the PZT polarization di-
rection indicated by the arrows. Characteristic high-angle annular dark field (STEM-HAADF)
images of the top (B, F) and bottom (D, H) PZT interfaces, showing the absence of any
extrinsic defects. (C, G) Cross-correlated images of the PZT layer, confirming the change
in polarization; the insets are the result of multi-slice simulations, with the horizontal dash
corresponding to the center of the unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Illustration of the cross-correlation and deconvolution routine. (A) A series of acquisitions
and (B) The reconstruction of 50 such images acquired over 5 µs intervals . . . . . . . . . . . . 77

5.6 Multi-slice calculations conducted for a 16 nm thick PZT layer assuming differing cation
displacements from their centrosymmetric positions. The dashed line is added as guide to
the eye to show the difference in displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

LIST OF FIGURES



xiv

5.7 Top: (A, B) In-plane vibrating sample magnetometry (VSM) measurements conducted at 305 K along
the [100] substrate direction, showing a ∼50% increase in saturation between the poled-up and poled-
down thick PZT samples (A) and a 10–20% increase in saturation for the thin PZT samples (B). (C)
Moment versus temperature measurements conducted in a 100 Oe magnetic field measured on heating
show a significant enhancement of TC with decreasing PZT thickness. Bottom: (D-G) Polarized neutron
reflectometry (PNR) magnetization depth profiles measured at 298 K and with an in-plane magnetic
field of 1 T along the [100] substrate direction. The insets show the measured spin asymmetry R++−R−−

R+++R−−
and the fits to the data. The vertical dashed lines mark the boundaries between adjacent film layers.
The black lines are a model that assumes uniform magnetization throughout each LSMO layer, while
the blue lines are a model that allows for graded magnetization through the LSMO. The arrows in the
inset show regions of improved fitting. There is a clear suppression of magnetization across the majority
of the top LSMO layer in (D), as well as suppression near the vacuum and PZT interfaces in the other
samples (E-G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 (A) Characteristic STEM-HAADF micrograph of the LSMO / PZT interface; the inset shows
the fast Fourier transform of the PZT layer. (B) Characteristic map of local c/a axial ratios in
the LSMO and PZT layers. This ratio varies throughout the LSMO but is largest at the vacuum
interface. (C-F) Line scans of c/a normal to the LSMO / PZT interface for all four films. The
vertical line indicates the PZT boundary, while the horizontal dashed region indicates the c/a
range outside of which magnetization is expected to be suppressed . . . . . . . . . . . . . . . . 81

5.9 (A) Relationship between T M F T
C (K) and P (in %) for various simulation cells as calculated from DFT.

Positive value for P indicates the percentage excess of Mn eg electrons filling dx2−y2 orbital relative to
the dz2 orbital and vice versa. The 30-atom supercell contains two distinct Mn atoms, Mn (I) (open,
red) and Mn (II) (filled, blue). (B) Relationship between T M F T

C (K) and axial ratio (c/a) as calculated
from DFT. A clear trend emerges between c/a, P, and T M F T

C . In unstrained LSMO, both dx2−y2 and
dz2 are filled. The application of in-plane tensile strain promotes preferential dx2−y2 filling in both Mn
atoms; simultaneously T M F T

C decreases. However, out-of-plane stretching gradually promotes transfer
of charge to dz2 orbitals and a corresponding gradual increase in T M F T

C is found. Circles correspond to
bulk LSMO and triangles are epitaxially strained LSMO (under uniaxial strain varying from 0–1% along
the [001] direction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.10 STEM-HAADF images and EELS maps of the top LSMO / PZT interface in the poled-up (A)
and poled-down (D) thick PZT samples. The numbers indicate the atomic rows across which
average spectra were collected and correspond to the Mn L2,3 spectra in (B, E). (C, F) Cal-
culated Mn L3 / L2 ratios and estimated Mn valences from each row. Error bars correspond
to the standard error of the Gaussian fits to the edges. Although both samples possess the
same valence in the bulk (∼3.4), they diverge near the PZT interface, indicating screening of
surface charge from the adjacent PZT layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Structural and chemical mapping of the heterostructure. (A) Cross-sectional STEM-HAADF
micrograph of the film structure, with the direction of ferroelectric polarization and SMART
linescan region indicated. (B) Power-law subtracted EEL spectra corresponding to the O
K edge, collected every lattice plane beginning at the LSMO / PZT interface. (a) and (b)
correspond to the pre- and main-peak features, respectively. (C) Power-law subtracted EEL
spectra corresponding to the Mn L2,3 edge. The direction of the bulk LSMO is indicated by
the arrow for both scans. We note that only the first ∼10 nm of the top LSMO layer remain
after sample thinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

LIST OF FIGURES



xv

6.2 Electron energy loss spectroscopy (EELS) measurements of local changes in O K edge fine structure,
overlaid with an illustration of the heterostructure. (A, B) show the O K pre- to main-peak separation
(∆EO(b−a)) in the vicinity of the PZT interface for the bottom and top LSMO layers, respectively. The
bottom layer exhibits a small (∼0.5 eV) change, while the top layer exhibits a much larger (∼1 eV)
change. The bottom layer shows this change over less than 1 nm, while the top layer shows a much
broader region of change, nearly 2.5–3 nm. (C, D) show the difference in EELS Mn L2,3 edge peak po-
sition (black circles) and L3/L2 peak intensity ratio (green triangles) in the vicinity of the PZT interface
for the bottom and top LSMO layers, respectively. This figure is a combination of scans from different
parts of the film and the scales for both curves are the same for panels C and D. The edges were fitted
using a combination of Gaussian functions in OriginPro and the error of each fit was calculated. The
difference in bulk energy separations is likely the result of different sample thicknesses on either side
of the PZT formed during sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Total (spin up + spin down) O K edge spectra calculated from density functional theory (DFT). (A)
For the bulk structures of La0.6Sr0.4MnO3 (blue), La0.7Sr0.3MnO3 (green), and La0.8Sr0.2MnO3 (orange)
compositions with ferromagnetic (FM) spin order. There is a clear shift to higher energy with increasing
Mn valence, as indicated by the arrow, in agreement with our experimental measurements (Figure 6.1).
(B) Comparison of the spectral weight and energies of the pre-peak feature (O 2p – Mn 3d hybridized
orbitals) between FM (continuous line) and AF-A (dotted line) spin configurations on the Mn atom for
the three compositions. For the AF-A compositions, the spectral weight increases and the pre-peak shifts
to a lower energy, relative to the FM compositions. (C) Pre- and main-peak spectral features for the
three bulk structures (FM spin order), where we constrain the valence charge of the La / Sr site to be
nominally 2.7+ charge so that the chemical composition of the bulk perovskite compound is fixed at
La0.7Sr0.3MnO3 for the three structures. We note that in this simulation the rotation amplitudes for the
MnO6 octahedra are varied. The effect on the EEL spectra is negligible in this case. (D) Calculated
energy difference (∆E in eV) between the pre-and the main peaks from (A) and (C) shown as circles
and triangles, respectively. (E) Calculated∆E for different Mn octahedra rotation amplitudes from (C),
showing a negligible change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Map of local Mn doping relative to bulk La0.7Sr0.3MnO3 as a function of position normal to
the LSMO / PZT interface for the bottom (A) and top (B) LSMO layers. The boundaries of the
associated magnetic and electronic phases are overlaid and estimated from the bulk LSMO
phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Polarized neutron reflectometry (PNR) measurements conducted at 298 K, with a 1 T field
applied along the substrate [100] direction in the plane of the film. (A) shows the resulting
nuclear scattering length densities (black) obtained from the fit to the data and the associ-
ated estimated magnetization (orange). We note some change in nuclear scattering length
density near the surface, as well as a reduced magnetization at the STO interface. The arrow
indicates the direction of ferroelectric polarization. (B) shows the measured non-spin-flip
reflectivities (shapes), overlaid with a fit to the data (lines) . . . . . . . . . . . . . . . . . . . . . 99

6.6 Measurement of local ferroelectric polarization. (A) and (C) show STEM-HAADF grayscale
and colorized images for the top and bottom interfaces, respectively. The dashed lines indi-
cate the interface region and the numbers mark the position of the measured unit cells. (B)
and (D) show the long (δI L) and short (δIS) Ti4+ cation displacement directions, as well as
the calculated spontaneous polarization (PS) for the top and bottom interfaces, respectively.
These displacements are the result of averaging over three to five positions parallel to the
interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

LIST OF FIGURES



xvi

A.1 θ − 2θ XRD patterns measured on each film and normalized by the intensity of the MgO
(002) substrate reflection. (A) shows the full pattern, confirming the presence of the desired
phases. (B) shows more detail of the region between 4.25–4.55 Å−1, indicating a shift in the
α-Fe (002) peak. (C) shows XRR measurements and respective fits, with the inset quantifying
the increase in root mean squared (σrms) surface roughness with increasing Fe thickness. We
note the presence of spurious MgO Kβ and W Lα reflections . . . . . . . . . . . . . . . . . . . . . 133

A.2 (A-C) Series of cross-section TEM images of the 20 / 45 nm Fe / Fe3O4, 25 / 45 nm Fe /
Fe3O4, and 30 / 45 nm Fe / Fe3O4 samples, respectively. The insets show high-resolution
TEM images representative of the high quality and epitaxy of the Fe3O4 / MgO interface . . . 134

A.3 (A-C) Cross-section TEM images of the Fe / Fe3O4 interface in the 20, 25, and 30 nm films, re-
spectively, taken parallel to the Fe3O4 <001> zone axis. (D-F) Inverse fast Fourier transforms
of the masked g= [100] reflection, showing the presence of multiple edge dislocations. The
dislocation density increases from ρ ≈ 0.175 nm−1 to ∼ 0.255 nm−1 between 20 and 25 nm
and then decreases to ∼ 0.125 nm−1 for the 30 nm film . . . . . . . . . . . . . . . . . . . . . . . 134

A.4 High-resolution TEM image of the 20 / 45 nm Fe / Fe3O4 interface taken along the Fe3O4
<010> zone axis. The insets show fast Fourier transforms of the Fe3O4 underlayer and
surface oxide, confirming that the oxide is Fe3O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.5 In-plane magnetic hysteresis loops measured by VSM (A) and MOKE (B) at 25 ◦C along the
MgO <100> direction, with the Fe layer thickness indicated. The inset of (A) shows the high
field response of the samples. There is a clear exchange bias in the 30 nm film, which is
more pronounced in the MOKE measurement. (C) shows the magnetic coercivity (HC) as a
function of Fe layer thickness measured by each technique. The coercivity increases between
20 and 25 nm, then significantly decreases for 30 nm . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.6 (A) Calculated in-plane uniaxial anisotropies resulting from substrate-induced strain, over-
layed with a cubic fit to the data, and (B) micromagnetics simulations conducted along the
MgO <100> direction using these anisotropies. The shape of the loops shows good agree-
ment with the measured data, but the trend in coercivity is only qualitatively reproduced . . 137

C.1 (A-D) Bulk vibrating sample magnetometry measurements conducted at 305 K along the
in-plane [100] and [110] directions, showing no difference in saturation or coercivity . . . . 144

C.2 Arrott-Belov temperature isotherms for the poled-up thick PZT sample. (A) Magnetic mo-
ment versus field plots taken in 4 K increments from 300–356 K with the sample holder
background removed. (B) M2 vs. H/M plots assuming critical exponents of β = 0.5 and
γ = 1.0, while (C) shows M1/β vs. (H/M)1/γ plots, with critical exponents of β = 0.492 and
γ= 1.029 estimated from the Widom and universal relations . . . . . . . . . . . . . . . . . . . . 145

C.3 (A) Logistic fits to the measured moment versus temperature data and (B) the first derivative
of these fits, with the minima marked on each curve . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.4 (A-D) Magnetization depth profiles for uniform (black) and graded magnetization (blue)
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.5 (A-D) Nuclear scattering length density profiles for uniform (black) and graded magnetiza-
tion (blue) models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

LIST OF FIGURES



xvii

C.6 (A-D) Polarized neutron reflectometry spin asymmetry (circles) and model fits, with the ar-
rows indicating regions of improved fit. The black model assumes a uniform magnetization,
while the blue model accounts for a graded magnetization, the only different fitting parame-
ters being the number of magnetic sublayers and their magnetizations . . . . . . . . . . . . . . 147

C.7 (A-D) Measured non-spin-flip reflectivities (shapes) and calculated fits to the data (solid
lines), assuming a graded magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.8 (A-D) Measured non-spin-flip reflectivities (shapes) and calculated fits to the data (solid
lines), assuming a uniform magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

D.1 Relative intensity of the O K pre-peak as a function of position for the bottom (A) and top
(B) LSMO / PZT interfaces. There is a significant increase in the pre-peak intensity of the
top layer near the PZT interface, which is spread out over a ∼2 nm distance. This figure is a
combination of two scans from different parts of the film . . . . . . . . . . . . . . . . . . . . . . . 154

D.2 Angle-resolved X-ray photoelectron (AR-XPS) spectra showing a shift in Mn 2p spin-orbit
doublet binding energy near the LSMO / PZT interface. We note the presence of a weak
shake up satellite near ∼647 eV, indicating a Mn2+ species arising from contamination . . . . 155

D.3 Illustration of the PZT unit cell and the displacements used to calculate the ferroelectric
polarization from STEM-HAADF images. δIS and δI L correspond to the short and long axes
of Ti4+ cations, respectively, while∆Ti refers to the absolute vertical displacement of the Ti4+

cations relative to the center of the unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

LIST OF FIGURES



xviii

Abstract
Correlating Interfacial Structure and Magnetism in Thin-Film Oxide Heterostructures Using

Transmission Electron Microscopy and Polarized Neutron Reflectometry
Steven Richard Spurgeon

Mitra L. Taheri

Oxide thin-films have attracted considerable attention for a new generation of spintronics devices, where

both electron charge and spin are used to transport information. However, a poor understanding of

the local features that mediate magnetization and coupling in these materials has greatly limited their

deployment into new information and communication technologies. This thesis describes direct, local

measurements of structure-property relationships in ferrous thin-films and La1−xSrxMnO3 (LSMO) /

Pb(ZrxTi1−x)O3 (PZT) thin-film heterostructures using spatially-resolved characterization techniques.

In the first part of this thesis we explore the properties of ferrous spintronic thin-films. These films

serve as a model system to establish a suite of interfacial characterization techniques for subsequent

studies. We then study the static behavior of LSMO / PZT devices with polarization set by the under-

lying substrate. Using transmission electron microscopy and geometric phase analysis we reveal the

presence of significant local strain gradients in these films for the first time. Electron energy loss spec-

troscopy mapping of the LSMO / PZT interface reveals Mn valence changes induced by charge-transfer

screening. Bulk magnetometry and polarized neutron reflectometry indicate that these chemical and

strain changes are associated with a graded magnetization across the LSMO layer. Density functional

theory calculations are presented, which show that strain and charge-transfer screening act locally to

suppress magnetization in the LSMO by changing the Mn orbital polarization.

In the second half of this thesis, we explore asymmetric screening effects on magnetization LSMO /

PZT composites. We find that the local ferroelectric polarization can vary widely and that this may be

responsible for reduced charge-transfer effects, as well as magnetic phase gradients at interfaces. From

this information and electron energy loss spectroscopy, we construct a map of the magnetic phases at

the interface. Collectively these results show that we must move toward high-resolution local probes of

structure and magnetism to achieve deterministic control of functional thin-film oxides.
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Chapter 1: Introduction

1.1 Motivation

The field of spintronics promises to revolutionize the design of electronics, enabling more robust and

efficient computing architectures. Spintronics devices utilize both electron spin and charge to convey

information in the solid-state.1 The advantages of solid-state electrically-switched magnetic memory are

numerous: such memory is predicted to have faster access times, higher rewritability, reduced energy

consumption, and no chance of mechanical failure.2 Designers have already envisioned other devices

such as spin switches that enable tuning of spin polarization under the application of an electric current,

but candidate materials for such devices are still being actively pursued.3 Thin-film heterostructures de-

posited using advanced growth techniques, such as molecular beam epitaxy and pulsed laser deposition,

show great potential for these applications.4,5 These techniques make it possible to deposit a ferromag-

net onto a ferroelectric substrate with atomic level precision and control. Coupling between the two

layers can be achieved through several mechanisms, including piezoelectric strain of a substrate lattice-

matched to a piezomagnetic layer, exchange bias between ferromagnetic and antiferromagnetic multi-

ferroic layers, as well as charge screening at ferromagnet-dielectric interfaces.6–8 The coupling between

magnetic and electronic order is broadly termed magnetoelectricity. As the size of thin-film systems

converges on the characteristic length scales of physical phenomena such as magnetic exchange, new

and poorly understood physics begins to emerge. Symmetry breaking at interfaces is also responsible for

induced changes in interfacial electronic structure and magnetic order. Artificial heterostructures have

opened up an entirely new field of research, since even minor changes in local structure and chemistry

can have profound effects on magnetoelectric coupling.9,10

The use of artificial magnetoelectric heterostructures in solid-state memory technology is currently

hindered by a poor understanding of the atomic-scale structural, chemical, and magnetic features that

mediate magnetoelectricity. Transmission electron microscopy offers a simultaneous high spatial res-

olution probe of interface structure and chemistry; this wealth of information can be combined with
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bulk magnetometry and interface-sensitive polarized neutron reflectometry to produce a complete un-

derstanding of heterostructure behavior. This static characterization will provide the framework to un-

derstand dynamic behavior in simplified device structures, leading to deterministic control of coupling

behavior and device performance. More broadly, the methods and suite of characterization techniques

assembled for this study can be applied to structure-property studies of other nanoscale magnetic sys-

tems.

1.2 Organization of the Thesis

This thesis is organized into the following structure:

Background In this chapter we introduce the concept of spintronics and discuss the various oxide ma-

terials that have been pursued for such applications. We describe the magnetic and ferroelectric

properties of these materials, as well as the phenomenology of magnetoelectricity. We conclude

with a discussion of coupling mechanisms in artificial magnetoelectric heterostructures and a sum-

mary of the current challenges in the field.

Techniques and Methods In this chapter we describe the techniques and methods used in the course of

this work. These techniques may be broadly divided into structural and magnetic characterization.

We explain the complementary approach of electron microscopy and neutron scattering and the

insights to be gained from local probes.

Interface Effects on Magnetization in Ferrous Thin-Films In this chapter we describe our preliminary

studies of Fe / MgO thin-film bilayers for spintronic applications. We use this as a model system

to assemble a comprehensive set of structural and magnetic characterization techniques to corre-

late structure and magnetism in thin-films. This chapter lays the groundwork for the subsequent

studies described in this thesis.

Substrate-Induced Polarization Effects in LSMO / PZT In this chapter we discuss the artificial mag-

netoelectric heterostructure LSMO / PZT. Using a substrate-controlled poling technique, we in-

duce different charge and strain states at the interface in this system. We then characterize local
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structure, chemistry, and strain state, which we correlate to magnetic properties, to develop a

comprehensive model for magnetoelectric coupling in these materials.

Screening-Induced Magnetic Phase Gradients at at LSMO / PZT Interfaces In this chapter we use elec-

tron energy loss spectroscopy to directly visualize the charge-transfer effect and its asymmetry with

polarization at interfaces in LSMO / PZT. We map the local electronic and magnetic phases at the

interface and argue that device designs must account for this asymmetric behavior.

Conclusions and Future Work In this chapter we summarize the primary findings of this thesis. We

explain how this informs a more complex and comprehensive model of coupling in spintronic

systems, and we suggest avenues for future study.

Appendix A: Strain Effects on Magnetization in Ferrous Thin-Films In this chapter we discuss ongo-

ing studies of ferrite bilayers, in which we disentangle strain and chemical effects on magnetiza-

tion.

Appendix B: Interface Effects on Magnetization in Ferrous Thin-Films In this chapter we discuss the

methods used in our study of interface effects on magnetization in ferrous thin-films.

Appendix C: Substrate-Induced Polarization Effects in LSMO / PZT In this chapter we provide fur-

ther details on bulk magnetometry, ferromagnetic Curie temperature measurements, and our po-

larized neutron reflectometry analysis.

Appendix D: Screening-Induced Magnetic Phase Gradients at LSMO / PZT Interfaces In this chap-

ter we discuss our measurements of local ferroelectric polarization in detail. We describe EELS

and XPS measurements, as well as the details of our DFT calculations.
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Chapter 2: Background

2.1 Introduction

In this section we first discuss the emerging field of spintronics and summarize the properties of the ma-

terials studied in this thesis. Structure-property relationships in the ferrous and manganite systems are

discussed; we then introduce the concept of magnetoelectricity and describe its theoretical and physical

underpinnings. We next describe the phenomenology of artificial magnetoelectric (ME) heterostructures

and the coupling modes operating in these materials. Finally we conclude with a discussion of the

current challenges in the field and the motivation for the present work.

2.2 Spintronics and Device Applications

For the past hundred years the electronics paradigm has relied on the transport of charge through a

device to convey logic. This paradigm has enabled many of the ubiquitous technologies we use today,

including the integrated circuit and radio communications. Until recently only the charge of the electron

was put to use in such devices; the electron spin was almost completely neglected. In the late 1980s this

changed with the discovery of giant magnetoresistance (GMR) by Albert Fert and Peter Grünberg.11,12

The authors synthesized a thin-film trilayer consisting of a non-magnetic Cr spacer sandwiched between

two ferromagnetic (FM) thin-film Fe layers; by tuning the thickness of the Cr layer they showed it is

possible to switch the coupling of the Fe layers from FM to antiferromagnetic (AF).12 This AF ordering

results in a high resistance state, because both spin states of conduction electrons travel the same mean

free path. By applying an external magnetic field the Fe layers can again be FM coupled, inducing a low

resistance state by increasing the mean free path of one spin state, as shown in Figure 2.1.13 Fert and

Grünberg received the 2007 Nobel Prize for their work, although the connection between electron spin

and conduction had been discussed and demonstrated decades before by Mott et al.14–16

The discovery of GMR spurred the development of advanced, high-density hard disk storage tech-

nologies.17 At the same time advances in thin-film growth and atomic-scale characterization gave re-
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Figure 2.1: (A) Increase in resistance caused by increasing Cr spacer thickness, resulting from a
transition from FM to AF coupling. (B) Illustration of the GMR effect, in which a high-resistance AF
state is tuned to a low-resistance FM state by the application of an external magnetic field.13,15

searchers unprecedented synthesis and analysis capabilities.18,19 This fortunate confluence of events

sparked renewed interest in the connection between spin and charge, giving birth to the field of spin-

tronics. This field, broadly described in Figure 2.2, encompasses many devices and materials systems.

Many new kinds of devices based on spintronics have been proposed, including racetrack memory and

spin valves.17 While not all of these have come to fruition, each has furthered the understanding of

basic physics and paved the way for successive generations of devices. Among the most promising of

these devices, MEs have recently attracted considerable attention, since they offer the potential to tune

magnetization directly by applying an electric field. These materials and their properties are the focus

of this thesis.

2.3 Functional Thin-Film Oxides

The class of thin-film oxides spans a range of diverse functionalities, structures, and properties. These

materials are used in many of the important devices we interact with each day, including hard drives,

integrated circuits, transducers, and other logic devices. Their drive to the forefront of materials science

has been enabled by novel growth techniques and improved characterization methods. Here we focus
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Figure 2.2: Overview of the many facets of spintronics technologies. Of particular interest in this
thesis is electric field control of magnetization.17

on three classes of oxides: namely, iron oxides, the rare-earth manganites, and the lead titanates. These

systems have attracted considerable attention for the next generation of spintronic memories and are a

playground for exploring novel phenomena at interfaces.

2.3.1 Ferrous Thin-Film Oxides

Iron and iron oxides are among the oldest known magnetic materials: magnetite-rich lodestone was

used in the first compasses developed by the Chinese as early as the 11th century.13 Iron and its alloys

have found widespread use in electromagnetic cores for transformers and motors, magnetic tape for

data storage, and more. Most recently, with the advent of advanced thin-film growth techniques, it has

become possible to synthesize highly pure Fe thin-films. Heterostructures of Fe and MgO exhibit very

large tunneling magnetoresistive (TMR) properties that are well-suited for use in hard drive read heads

and other sensing applications.20–22 Monolayer-thin Fe films display a significantly enhanced magneti-

zation that may be tuned by the application of an electric field and shows promise for ME logic.23,24 By

understanding the structure-property relationships in this system, we will be able to engineer materials
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for the next generation of spintronics devices.

Structure of Ferrous Thin-Films

In the last few decades advanced deposition techniques have been used to fabricate increasingly pris-

tine iron films, with precise control over stoichiometry and film structure. Atomic Fe has an electronic

configuration (Ar) 3d64s2, with four unpaired 3d electrons yielding a magnetic moment of 4 µB; how-

ever, in a solid, crystal-field splitting leads to the formation of a broad 4s band and a narrow 3d band.

Charge transfer between the 4s→ 3d bands results in a net (Ar)3d7.44s0.6 configuration.13 Below a crit-

ical temperature of 1044 K, α-Fe assumes a body-centered cubic (BCC) structure with nearly perfectly

paired inner- and 4s shells. The 3d band configuration is 3d↑4.83d↓2.6, resulting in a net magnetic mo-

ment of 2.2 µB.13 This magnetic ordering is highly sensitive to lattice strain, oxidation state, and surface

morphology—Table 2.1 shows the diversity of ordering types for different ferrous compounds.

Table 2.1: Magnetic ordering of various ferrous compounds.13

Ordering Type Compound Magnetic Moment (µB)

Ferrimagnet γ-Fe2O3 5.0

Ferromagnet
α-Fe 2.2
YFe2 1.45

Antiferromagnet γ-Fe Unstable
Pauli Paramagnet YFe2Si2 0
Diamagnet FeS2 0

To induce these different magnetic states, Fe has been grown on a range of substrates, including

Si (001), GaAs (001), and MgO (001).25–27 In the case of MgO (001), there is a mismatch between

BCC α-Fe (Im3̄m | a = 2.87 Å) and rocksalt MgO (Fm3̄m | a = 4.22 Å) lattice parameters, resulting in

45◦ in-plane rotation during growth.27 This epitaxial relationship
�
Fe [100](001) ∥MgO [110](001)

�
,

shown in Figure 2.3, leads to an approximately 3.8% in-plane tensile strain. Although this strain is

small, it can lead to the formation of islands instead of a continuous film during growth. By varying the

deposition conditions it is possible to control the morphology and structure of these films, ranging from

discrete nanoscale islands (Volmer-Weber) to continuous films, or mixed island-film (Stranski-Krastanov)

structures.27–29
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Figure 2.3: Illustration of the Fe [100](001) ∥ MgO [110](001) epitaxial growth relationship be-
tween BCC α-Fe and rocksalt MgO (001).27

Magnetic Structure-Property Relationships

While an all-encompassing discussion of thin-film magnetism is beyond the scope of the present work,∗

it is worthwhile to consider the effect of the aforementioned film morphology changes on the magneti-

zation of ferrous thin-films. The properties of these materials often differ markedly from the bulk and

show a dependence on nanostructuring.31 This can be understood by considering the expansion of the

magnetocrystalline anisotropy (MCA),

Ea

V
= K1 sin2 θ + K2 sin4 θ + K ′2 sin4 θ cos 4ϕ + K3 sin6 θ + K ′′3 sin6 θ cos4ϕ (2.1)

where K1 is the uniaxial anisotropy constant, K2−K3 are higher-order anisotropy constants that depend

on crystal symmetry, and θ is the relative orientation of the crystal and applied field.32 Examples of

the calculated energy surfaces for cubic FMs are shown in Figure 2.4. It is clear that modification of

the crystal symmetry, by abrupt termination at a surface or the introduction of surface roughness for

instance, will affect this anisotropy. The demagnetizing fields associated with roughness will act to

impose a uniaxial anisotropy, the relative contribution of which scales inversely with film thickness (t ∝
d−1).33 Precise control of interfaces and roughness may then be used as a means to tune the MCA and

fundamental magnetic hysteresis of ferrous thin-films. Achieving this control necessitates an integrated,

atomic-scale approach to materials fabrication and characterization of structure and magnetic properties.

∗The interested reader is referred to Falicov et al. for more information. 30
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Figure 2.4: Example of the energy surfaces for various cubic ferromagnet systems.32

2.3.2 Rare-Earth Manganites

In the past two decades the field of oxide chemistry has been dominated by studies of superconduct-

ing cuprates and colossal magnetoresistive materials, such as the doped manganites (“Re”1−x“A”xMnO3,

where “Re” is a rare-earth such as La and “A” is a divalent cation such as Sr or Ca).34 These compounds

can be grown with high purity and may be readily interfaced into precise, atomically-sharp heterostruc-

tures. The magnanites are notable for the rich variety of electronic and magnetic phases they exhibit, as

well as their tunability by strain, charge, chemical doping, and other stimuli.35 They have been studied

for a range of applications, including magnetic memory, photovoltaics, fuel cells, and thermoelectrics.36

The magnetic “attraction” of the manganites arises from the various kinds of exchange coupling they

exhibit—namely, super exchange and double-exchange—and the intimate connection between these

coupling modes and local structure.35–37 Understanding and controlling these interactions by coupling

the manganites to other systems is the focus of this thesis.

Structure of the La1−xSrxMnO3 Compounds

Of all the manganites, La1−xSrxMnO3 (LSMO) in particular has attracted much attention, because of

its large bandwidth, high Curie temperature, and the potential to induce first-order electronic phase

transformations through controlled doping and strain modulation.37,38 This compound can be under-

stood as a solid solution of the end members LaMnO3 (LMO) and SrMnO3 (SMO), with formal valences

La3+Mn3+O2−
3 and Sr2+Mn4+O2−

3 , which yields a mixed-valence state (La3+
1−xSr2+

x )(Mn3+
1−xMn4+

x O3).37

LSMO is part of the perovskite class, which is able to accommodate lattice distortions by lowering its

symmetry from cubic to rhombohedral, tetragonal, orthorhombic, and monoclinic phases.35 This results
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from two effects, namely the Jahn-Teller distortion and the size mismatch between A-site cations. The

former lifts the orbital degeneracy of the Mn3+O6 octahedra, concomitant with a tetragonal elongation of

the lattice along the z direction; this distortion acts to stabilize the occupancy of the lowest eg orbital.35

The latter effect arises from internal chemical pressure in the lattice, which responds by cooperative

rotations and tilting of MnO6 octahedra. This is described by the Goldschmidt tolerance factor,

t =
rA+ rOp

2(rB + RO)
(2.2)

where rA, rB, and rO are the ionic radii of the A, B, and O species, respectively.39 The end member LMO

possesses an orthorhombic Pnma structure, which consists of six-fold coordinated rare-earth La cations

at corner positions and body-centered Mn ions surrounded by oxygen octahedra; the crystal field splits

the five Mn 3d orbitals into a t2g triplet and eg doublet state.40–42 This structure, shown in Figure 2.5,

possesses an electron configuration of t3
2g e1

g ; in this configuration the t3
2g (S = 3/2) electrons may be

considered localized because of poor hybridization with O 2p states, while the e1
g electron (S = 1/2) is

strongly hybridized and may be itinerant or localized.35,43–45 Controlled doping of divalent Sr2+ ions for

La3+ ions in LMO causes an effective increase in the proportion of Mn4+ ions, introducing itinerant holes

in the eg state and inducing a phase transition to an rhombohedral R3̄c structure. This charge doping

sensitivity results in a rich variety of magnetic and electronic phases, as shown in Figure 2.6, ranging

from a charge-ordered insulating state at low Sr doping and temperatures to an AF metallic state at Sr

doping in excess of x ≈ 0.5.36 Below x ≈ 0.5 doping the t↑2g band is fully occupied, while the e↑g band

is only partially occupied. The O 2p states, however, are fully occupied and their hybridization with the

Mn eg states determines the electronic structure near the Fermi level. Because of the band gap between

the minority spin states and the O 2p band, the spin-polarized density of states only has majority carriers

at the Fermi level and LSMO is considered a half-metal.35

Exchange Mechanisms in the Manganites

The diverse array of phases shown in Figure 2.6 results from two kinds of magnetic exchange interac-

tions: superexchange and double-exchange. Both of these mechanisms depend on the occupancy and
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Figure 2.5: Schematic of the LaMnO3 Pnma parent perovskite structure. La atoms are shown in
red, Mn atoms are shown in light blue, and O octahedra are shaded.

Figure 2.6: Bulk phase diagram of the La1−xSrxMnO3 system. I = Insulating, M = Metallic, PM =
Paramagnetic, FM = Ferromagnetic, AFM = Antiferromagnetic, and C = Charge-ordered phases.36
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orbital degeneracy of the 3d states and are mediated by O 2p orbitals. In superexchange a singly-

occupied 3d orbital gives rise to the virtual transfer of two electrons and the spread of electrons from

O 2p orbitals to unoccupied Mn 3d orbitals.13 This results in a lower energy AF spin configuration, as

shown in Figure 2.7, as is the case for monovalent LMO and SMO compounds.

Figure 2.7: Model of superexchange coupling in monovalent manganites. The top shows the hy-
bridization of O 2p and Mn 3d states, while the bottom shows ferromagnetic (a) and antiferro-
magnetic (b) spin configurations, the latter of which is lower energy because it promotes increased
2p− 3d hybridization.13

If a compound takes a mixed-valence state through the doping of divalent Sr2+ ions, on the other

hand, the double-exchange mechanism will generally give rise to long-range FM ordering, as shown

in Figure 2.8. Although the 3d core electrons are localized in a narrow t↑2g band, FM ordering occurs

because the fourth d electron occupies a hybridized e↑g band with O. This hybridization permits hopping

from core to core through the 2p− 3d bonds. When core spins are parallel this hopping is unrestricted,

but when they are antiparallel Hund’s coupling impedes hopping and imposes a large barrier to delocal-

ization.13,37,46

Figure 2.8: Model of double-exchange coupling in mixed-valence manganites. On-site Hund cou-
pling gives rise to parallel alignment of hybridized e↑g electrons, leading to long-range ferromagnetic
order.37

As would be expected, this coupling is highly sensitive to the Mn–O–Mn bond angle. The spin-
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dependent hopping resonance integral governing this interaction is given by,

di j ≈ εσλ2
σ cosθ cosϕ/2 (2.3)

where εσ is the one-electron energy, λσ is the covalent-mixing parameter between Mn eg orbitals and

the O 2p orbitals, (180◦−θ) is the Mn–O–Mn bond angle, and ϕ is the angle between spins on adjacent

Mn3+ and Mn4+ ions.35,47 Chemical modifications to the effective Mn valence will greatly affect this

coupling, as will any structural distortion that changes bond angles or orbital overlap. Data compiled

by various groups show that there is a clear doping dependence on magnetic and electronic order in the

system.44,48,49 The application of strain through constrained epitaxial growth can also tune the electrical

resistivity and FM Curie temperature of the manganites.6,50–53 Recently the reversible tuning of this

strain using piezoelectric sbustrates has been demonstrated with great success.54–58 These features offer

various handles to tune the magnetic properties of the manganites, making them quite attractive for

device applications.

2.3.3 Piezoelectric Lead Titanates

Piezoelectrics, materials which develop an electrical polarization under the application of strain, are

among the most prolific oxide materials. They find use in applications as diverse as transducers, sensors,

microgrippers, energy harvesting, and medicine.59 Although BaTiO3 (BTO) was the first ceramic mate-

rial in which ferroelectricity was discovered, in the 1950s solid solutions of Pb(ZrxTi1−x)O3 (PZT) were

also found to be ferroelectric (FE)—they soon became the dominant piezoelectric system.60 In recent

years there has been a push toward more environmentally-friendly, Pb-free compounds, but PZT is still

highly prized for its large piezoelectric coefficient and is used in the present work.

Structure of the Pb(ZrxTi1−x)O3 Compounds

Pb(ZrxTi1−x)O3 is the most ubiquitous of the piezoelectrics because of its high piezoelectric and coupling

coefficients, which were first measured by Berlincourt et al. in the 1950s.61 At high temperatures it

possesses a cubic Pm3̄m-type structure, but at lower temperatures it is generally rhombohedral R3c,

tetragonal P4mm, or monoclinic Cm.62–64 The cubic PZT structure is similar to that of LSMO, albeit with
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Figure 2.9: (A) Spontaneous dipole formation in PbTiO3 by off-centering of the Ti4+ cation. (B, C)
show enhancement of this dipole by the application of external stress.63

Pb atoms at the corner positions and Zr / Ti atoms occupying the octahedral positions. Spontaneous off-

centering of the Ti4+ cation breaks the centrosymmetry of the cubic structure at low-temperatures and

results in a dipole; this dipole may be enhanced by the application of stress, as shown in Figure 2.9,

particularly in the vicinity of the morphotropic phase boundary (MPB).63 Alternatively, an electric field

may be applied to strain the lattice by further displacing the charge center in the crystal.

In particular, near the MPB (0.455 ≤ x ≤ 0.48), there is a symmetry-breaking transition from rhom-

bohedral to tetragonal phases, with a concomitant rotation of FE polarization (Figure 2.10).60,63,65 The

FE polarization vectors in rhombohedral PZT intersect at 71◦ and 109◦, giving rise to domain walls on

{110} and {100} planes. Alternatively, the vectors in the tetragonal phase intersect at 90◦, giving rise to

walls on {110} planes.66 The piezoelectric strain has been shown to lie along the directions of the mono-

clinic distortion instead of the polar axis, which explains PZT’s exceptional electro-mechanical properties

around the MPB.67

The Piezoelectric Effect

The piezeoelectric effect relates polarization (a vector) to stress (a second rank tensor) as,

Pj = d jkl X̂ kl (2.4)

where Pj is the polarization, X̂ kl is the stress tensor, and d jkl is the general piezoelectric coefficient.63
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Figure 2.10: Phase diagram of the PZT system, showing the morphotropic phase boundary (MPB)
near x ≈ 0.46, as well as the rotation of the polarization direction during the symmetry-breaking
rhombohedral-to-tetragonal phase transition.63

Equation 2.4 can be transformed to a different coordinate system, yielding a polar third rank tensor for

the piezoelectric coefficient,

d̂ ′imn = ai jamkanl d jkl (2.5)

The symmetry of this stress tensor reduces an initial 27 components to only 18 independent components,

which may be expanded as,


P1

P2

P3

=


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36





X1

X2

X3

X4

X5

X6



(2.6)

From thermodynamic arguments it can be shown that the direct and converse piezoelectric effects are
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equal. Moreover, according to Neumann’s Principle, the piezoelectric matrix must remain invariant after

applying the symmetry of a particular space group.63 Applying this requirement to the 32 crystal classes

and seven Curie groups yields only a limited number of systems that can support piezoelectricity, all

of which are noncentrosymmetric and polar.63 PZT’s figure-of-merit (d33) easily surpasses its rivals, as

shown in Table 2.2.

Table 2.2: Piezoelectric coefficient (d33) for various compounds.63

Material Crystal Symmetry d33 (pC N−1)

ZnO 6mm 12.4
PbTiO3 4mm 117
LiNbO3 3m 16
PbNb2O6 mm2 60
PZT-5H ∞m 593

From the piezoelectric matrix it is clear that the application of a mechanical stress will affect particular

components of the matrix. For instance, the application of tensile stress parallel to the dipole along the

[001] direction in Figure 2.9.B enhances the d33 component, while tensile stress perpendicular to the

dipole along the [100] direction in Figure 2.9.C enhances the d31 component.63 Thus, there is a clear

need to understand the relationship between FE polarization, crystal orientation, and the stress-strain

response of piezoelectrics.

2.4 Magnetoelectricity

In the past several decades MEs and multiferroics have captivated the oxides community. Research

into these materials has been spurred by advances in thin-film growth techniques; these improvements

have enabled single atomic layer control of perovskites, which can be layered into precise epitaxial

heterostructures with unprecedented levels of control over strain and chemistry.34 At the same time,

aberration-correction has become routine in transmission electron microscopy and it now possible to

characterize structure, defects, and chemistry in the oxides down to the picometer level.68 It is now

possible to couple phenomena in these thin-films at interfaces to unlock novel functionalities not found in

nature.36,69,70 This rapidly changing landscape offers a rich and fertile ground for the materials scientist

to ply his trade.
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2.4.1 The Magnetoelectric Effect

Magnetoelectrics are a source of fascination for both practical and fundamental reasons. Many new

kinds of ME logic devices have been proposed, including magnetic tunnel junctions (MTJs) with a ME

active layer, as well as devices in which an electric field is used to directly tune magnetization.7,71 Fun-

damentally these compounds show promise because of the cross-coupling between magnetization and

an applied electric field, even in the absence of a spontaneous polarization.72 The genesis of magne-

toelectricity can be traced back to Röntgen and Curie, who in the 1880s–1890s discussed the mag-

netization of a moving dielectric in a magnetic field, as well as the symmetry requirements for ME

in a crystal.10,73,74 Debye first used the term “magnetoelectric,” but he did not have much success in

demonstrating the effect.75 Single-phase MEs were not discovered until researchers fully understood the

implications of time-reversal symmetry-breaking, first described by Curie.74 Dzyaloshinskii discussed

time-reversal symmetry-breaking in Cr2O3 and subsequent experimental measurements confirmed the

coupling, albeit weak, between magnetization and polarization.10,76–78 This was followed by the discov-

ery of a number of other ME systems, including Ti2O3, GaFeO3, the boracites, and PbFe0.5Nb0.5O3.79–82

While many more single-phase MEs have since been found, they all suffer from a rather weak coupling

between polarization and magnetization.10

To better understand this, we must first describe the energetics of the ME effect. The free energy of

a ME system is given by,

F (E,H) = F0 − PS
i Ei −MS

i Hi − 1

2
ε0εi j Ei E j − 1

2
µ0µi jHiH j (2.7)

−αi j EiH j − 1

2
βi jk EiH jHk − 1

2
γi jkHi E j Ek − · · ·

where E and H are the electric and magnetic fields, respectively. PS and MS are the spontaneous polar-

ization and magnetization, respectively. ε̂ and µ̂ are the electric and magnetic susceptibilities. Finally,

α̂ corresponds to the linear ME tensor, while β̂ and γ̂ correspond to higher-order ME coupling effects.10

Differentiating this free energy equation with respect to the electric and magnetic fields yields the fol-
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lowing relations for the polarization and magnetization, respectively,

Pi(E,H) =−∂F
∂ Ei

= PS
i + ε0εi j E j +αi jH j +

1

2
βi jkH jHk + γi jkHi E j − · · · (2.8)

Mi(E,H) =− ∂F
∂ Hi

= MS
i + ε0εi jH j +αi j Ei + βi jk EiH j +

1

2
γi jk E j Ek − · · · (2.9)

For a simple linear ME coupling we can describe the relationship between polarization and magnetiza-

tion as,

P= α̂H (2.10)

M= α̂′E (2.11)

where α̂ and α̂′ are the ME and EM tensors, respectively, given by,


Px

Py

Pz

=

α11 α12 α13

α21 α22 α23

α31 α32 α33




Hx

H y

Hz

 (2.12)


Mx

My

Mz

=

α′11 α′12 α′13

α′21 α′22 α′23

α′31 α′32 α′33




Ex

Ey

Ez

 (2.13)

for which α′i j = α ji and has units of s m−1.83

As already mentioned, Cr2O3 and many other single-phase MEs have very small coupling coefficients,

which limits their usefulness. Table 2.3 presents a list of some of these compounds; among them,

LiCoPO4 and TbPO4 have some of the highest coupling coefficients, but are still less than 40 ps m−1.10

There has been considerable debate as to why this is the case; it is thought that FM requires transition

metal d electrons, which suppress off-centering necessary for ferroelectricity.84 In general, the difference
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in magnetic and FE ordering temperatures of these materials have been too great for practical use.85 For

instance, the well-studied ME multiferroic BiFeO3 (BFO) possesses a large spontaneous polarization of

90 µC cm−2, but a Nèel temperature of 643 K and a FE Curie temperature of 1100 K. In other cases,

the FE polarization itself is too small to be of use, as in BiMnO3 (Ps = 100 nC cm−2).71 Research into

single-phase MEs is ongoing, but it is clear that alternatives are needed for practical device applications.

Table 2.3: Magnetoelectric coefficients (α) measured for various single-phase magnetoelectrics.10

Material α (ps m−1) Reference

Cr2O3 4.13 86
LiCoPO4 30.6 87
Y3Fe5O12 ∼30 88
TbPO4 36.7 89

2.4.2 Artificial Magnetoelectric Heterostructures

As already discussed, the 1990s and early 2000s saw a renaissance in the growth of thin-film oxide ma-

terials. Modern-day alchemists such as Ramamoorthy Ramesh and Darrell Schlom developed ways to

grow increasingly complex metal-oxide heterostructures with ever-increasing quality, purity, and perfec-

tion.6,18 Their experimental work was buttressed by the groundbreaking theoretical work of J.F. Scott,

Craig Fennie, Karin Rabe, and others, who harnessed increasing computing power to forecast promising

new systems.90,91 As these two approaches converged, it was soon realized that disparate properties

might be coupled at interfaces to craft powerful new functionalities.7,9,70 This is shown in Figure 2.11,

where mechanical coupling between piezoelectric and piezomagnetic layers mediates electric-field tun-

ing of magnetization.

The class of “artificial” MEs encompasses these kinds of heterostructures. Various geometries have

been proposed, such as particles or fibers embedded in a matrix.7 Early studies utilized unidirectional

solidification to synthesize a composite structure with promising properties—the first artificial ME, BTO

/ CoFe2O4, possesses ME coefficients up to 720 ps m−1, an order of magnitude higher than the values

shown in Table 2.3.92–94 In the 90s attention turned to laminar thin-film heterostructures because of

their relative simplicity and adaptability to conventional lithography processes.7
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Figure 2.11: Illustration of coupling between a piezoelectric and piezomagnetic layer. The layer
in the top left strains under the application of an electric field. If a piezomagnetic is mechanically
coupled to this layer, the application of an electric field induces indirect changes in magnetizaton.7

2.4.3 Magnetoelectric Coupling Modes

Coupling in artificial ME heterostructures may be mediated by various modes, which may be broadly

divided into exchange-, strain-, and charge-mediated coupling.95 These are summarized in Figure 2.12.

Figure 2.12: (A-C) Illustration of the effects of various kinds of interfacial ME coupling on M − E
hysteresis behavior. (D-G) The resulting magnetic hysteresis behavior for different kinds of interfa-
cial coupling mechanisms.95

Exchange-Mediated Coupling

Magnetic order in transition metal oxides is mediated by exchange interactions through the hybridiza-

tion of O 2p orbitals with metal 3d cations, giving rise to predominantly AF (superexchange) or ferri

/ FM (double-exchange) order, as described in Section 2.3.2.95 One would intuitively expect a close
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relationship between this magnetic order and local polarization, as is the case for the archetypal ME

multiferroic BFO.96,97 It has been shown that magnetization may be tuned through the exchange bias ef-

fect by coupling BFO to an adjacent FM; then, by switching the FE polarization, one can induce changes

in this bias.98

The phenomenon of magnetic exchange bias (EB) was first discovered in the 1950s by Meiklejohn

and Bean in their study of oxidized Co particles.99,100 Put simply, EB arises from an interfacial exchange

interaction between an AF and FM; when a bilayer composite of such materials is heated above the Néel

temperature of the AF and then cooled in an external magnetic field, AF spins at the interface act to pin

adjacent FM spins.101 This interaction imposes an extra coercive force on the FM layer, which manifests

in a horizontal shift in the hysteresis loop (HEB). Although there have been many proposed models for

this behavior, uncompensated interfacial spins are generally regarded as a requirement for EB to occur:

if their distribution and orientation in a substrate can be controlled, it should therefore be possible to

tune the magnetic behavior of the adjacent FM layer.102–104 Most single-phase ME multiferroics exhibit

AF order and it is conceivable that a material such as BFO could be coupled to a thin FM layer in a

heterostructure through the EB mechanism. More importantly, in the case of BFO this AF is strongly tied

to the FE polarization, presenting a way to tune the EB.

BFO has been the subject of much study for its simultaneous room-temperature AF and FE charac-

ter after the Ramesh group published a study in 2003 showing a thin-film FE polarization an order of

magnitude larger than in the bulk.105 At room-temperature BFO is part of a rhombohedral R3c point

group (arh = 3.965 Å/ αrh = 89.3− 89.4◦) and possesses a perovskite-type unit cell (u.c.), with Bi3+

ions at eight-fold coordinated sites and Fe3+ ions at six-fold coordinated sites.106–108 The mismatch

between oxygen and bismuth ions can also be described by the Goldschmidt tolerance factor (see Equa-

tion 2.2), which predicts buckling of the oxygen octahedra.39,109 This buckling causes an octahedral

tilt of ω = 11 − 14◦ around the [111] polarization direction and a resulting Fe–O–Fe bond angle of

∼ 154 − 156◦.107,108,110 The Fe–O–Fe bond angle has important consequences for magnetic and elec-

tronic order in the system, as it dictates both magnetic exchange and orbital overlap, similar to the

Mn–O–Mn bond in the manganites (see Section 2.3.2).111 Catalan et al. have proposed a model for the
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Figure 2.13: Schematic of the BFO structure (in a hexagonal representation) showing tilted pairs
of octahedra. Green atoms are Bi ions and turquoise atoms are Fe ions surrounded by red oxygen
octahedra. Arrows indicate Mn spins.

metal-insulator transition in BFO that depends on the Fe–O–Fe bond angle.111 In their model BFO is a

charge-transfer insulator with a bandgap controlled by the overlap of O 2p and Fe 3d bands—a view also

supported by the screened-exchange model.112,113 The Fe–O–Fe angle is controlled by the FE distortion,

suggesting that magnetization and polarization may be coupled.113–115

When BFO is epitaxially grown in thin-film form on a substrate such as SrTiO3 (001) (STO), a symme-

try lowering in-plane contraction and out-of-plane elongation gives rise to a monoclinic structure.116,117

Both bulk single crystals and thin-films of BFO show a high FE polarization of approximately 100 µC

cm−2 along the [111]pseudocubic direction that is also relatively insensitive to strain.114,118 Early work

seemed to indicate that in-plane compression gives rise to an enhancement of polarization, but more

recent studies have shown that the polarization is largely unaffected by strain state.105,119,120 This weak

strain dependence is due to BFO’s relatively small piezoelectric constant of 15–60 pm V−1, compared

to 100–1000 pm V−1 for other perovskite FEs.118,121 This small constant makes the material a relatively
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Figure 2.14: Relationship between polarization, spin cycloid propagation direction, and magnetic
easy plane. A 71◦ switch from [111] to [111̄] FE polarization directions induces a switch in the
magnetic easy plane.122

poor candidate for strain-mediated ME coupling.

Locally BFO is a G-type AF, with each Fe3+ spin surrounded by six antiparallel spins on its nearest Fe

neighbors, as shown in Figure 2.13.111 ME coupling to the FE polarization gives rise to a weak canted

moment and a slight disordering of the G-type spin structure. There is an additional long range spin

cycloid that repeats over a 62–64 nm distance along a [110] propagation direction and consists of AF

ordered sublattices.122,123 Neutron diffraction studies of monodomain BFO crystals have shown that the

spins rotate within the magnetic easy plane defined by the FE polarization (P ∥ [111]pseudocubic) and

the cycloid propagation vector (k ∥ [101̄]pseudocubic).96,122 Moreover, Lebeugle et al. and Lee et al. have

shown that it is possible to switch the FE polarization and induce a switch in magnetic easy planes (spin-

flip). They found that only a change in polarization direction (i.e. 71◦ polarization rotation) affected

the magnetic orientation and that merely changing the polarity (i.e. 180◦ rotation) had no effect. This

is shown schematically in Figure 2.14. Control of AF ordering alone may be powerful, but such ordering

is too difficult to read in memory applications. Since FM ordering provides an easier signal to measure,

it is better to couple AF and FM order through the EB phenomenon for device applications.

Coupled oxide heterostructures offer an interesting twist on traditional EB, since the hysteresis be-

havior of an FM layer can be indirectly controlled by electrical switching of AF order. The use of mul-

CHAPTER 2: BACKGROUND



24

Figure 2.15: Illustration of polarization-induced changes in the hysteresis of a Co layer exchange
bias-coupled to a BFO underlayer. (A-D) correspond to different in-plane polarization directions.127

tiferroics or FEs in such applications has been explored in the Cr2O3 and YMnO3 systems.124,125 BFO is

an ideal candidate for similar use, since a voltage-induced spin-flop could be used to switch between

different states of EB. Groups have already observed EB in thin FM films grown on BFO and measured

voltage-induced changes in bias.126–128 Changes in hysteresis behavior are shown to depend on FE po-

larization in Figure 2.15. Recent studies of BFO / CoFe heterostructures have revealed complex FM

magnetic domain structures that depend on the underlying FE domain structure.129

The coupling of BFO to manganites such as LSMO is another possibility that is just starting to re-

ceive attention.98 The two systems show high structural compatibility and offer the potential for a well-

matched, high quality interface. The ME properties of such a composite are further enhanced by LSMO’s

colossal magnetoresistance, which makes it appealing for a multifunctional device. Work by You et

al. has shown that it is possible to induce changes in the uniaxial anisotropy of the LSMO layer by

switching striped FE domains in BFO.130 Recent synchrotron studies have confirmed the presence of a

new magnetic phase at the LSMO / BFO interface resulting from orbital reconstruction, but the pinning

mechanism that drives EB is not fully understood.131 Moreover, it is speculated that local factors such as

spin anisotropy and interface roughness give rise to a complex magnetic domain structure. From a more

fundamental perspective, the size and type of FE domains in BFO is known to play a role in EB coupling,

but detailed information is lacking.71,132

Charge-Mediated Coupling

Charge-mediated coupling in oxide heterostructures finds its origin in semiconductor field-effect devices,

such as metal-oxide-semiconductor field-effect transistors (MOSFETs).133 These devices were first devel-
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Figure 2.16: Illustration of charge accumulation (top) and depletion (bottom) states in a MOS-
FET device. The application of a voltage to the gate increases the effective carrier density in the
accumulation state and vice versa for the depletion state.133

oped in the 1970s–1980s and are based on a tripartite design of source and drain terminals, a conducting

channel connecting the terminals, and a gate terminal that tunes the resistivity of the conducting chan-

nel.134 The application of an electric field to the gate changes the effective density of the mobile carriers

in the conducting channel; when the carrier density is increased, this is termed accumulation, while

when it is decreased, this is termed depletion.133 An illustration of this behavior is shown in Figure

2.16.

The areal carrier density for such a MOSFET device lies in the range of 1012−1013 charges cm−2 for

a 100 Å channel; with a gate dielectric such as SiO2 it is possible to tune the effective carrier density by

this much—even more with a FE such as PZT.133 For instance, PZT has a remanent polarization in the

range of ∼ 3× 1014 charges cm−2, which is an order of magnitude larger than the breakdown field of

SiO2.135 This suggests that an FE layer may be used to induce sizable modulations of the carrier density

in a metal. However, it should be noted that these modulations are screened quite quickly by free carriers

in a metal. One can estimate the expected Thomas-Fermi screening length (λT F ) in a metal using the

equation,

λT F =
p
ϵb/(4πe2∂ n/∂ µ) (2.14)

where ϵ is the background dielectric constant of the oxide, b is the interplanar spacing, and n(µ) is the
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chemical potential dependence of the charge carrier density.133 According to this equation, the expected

screening length for most metals is on the order of a few u.c. This theoretically limits the charge-screening

effect to a small layer at the interface.

In the case of charge-mediated ME composites, this field effect is generally used in one of three ways:

to directly modify the magnetic moment of a system, to change the magnetic interactions present in the

system, or to change the magnetic anisotropy in the system.95 In the first case, charge-screening by the

metal modifies the spin asymmetry at the Fermi level, giving rise to a change in magnetic moment.136

This has been predicted theoretically in several heterostructures, including Fe / BTO (001) and Fe3O4 /

BTO, where the ferroelectric causes local bonding changes at the interface.23,137 It has also been observed

in the manganites, particularly La0.8Sr0.2MnO3 / Pb(Zr0.8Ti0.2)MnO3, where the bound surface charge

from the FE directly affects the adjacent Mn valence.138

The second mechanism of charge-mediated coupling tunes the magnetic interactions present in a

system. This has been exploited in the case of dilute magnetic semiconductors, such as (In,Mn)As,

(Ga,Mn)As, and MnxGe1−x, where p− d shell interactions drive magnetic ordering by connecting itiner-

ant carriers to localized Mn dopant spins.95,139 Bound surface charge from a FE can modulate the carrier

density in these compounds and stabilize FM order. Even in the case of metallic complex oxides, such as

LSMO, it is possible to induce sizable modulation of carrier densities, albeit across a shorter screening

length.138,140 In these compounds doping of La by a divalent alkaline earth, such as Sr or Ca, removes

an eg carrier from the system and leads to a transition from Mn3+ to Mn4+ valence—analogous to hole

doping.95 Similarly, the screening of carriers from an adjacent FE can also produce an effective valence

change, with associated changes in electronic and magnetic ground states.141,142

This mechanism is thought to operate in the LSMO / PZT system, where an interfacial hole charge

depletion state gives rise to FM ordering and an accumulation state gives rise to AF ordering at low-

temperature (Figure 2.17).138,143 Vaz et al. have proposed that such a spin structure change is necessary

to account for the induced magnetization change upon switching the PZT polarization direction; they

cite several first principles studies of related LSMO / STO and La0.5Ba0.5MnO3 / BTO systems, in which it

is calculated that an AF-A-type configuration represents the lowest energy ground state.144,145 However,
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Figure 2.17: Calculated ground-state spin configurations for depletion (left) and accumulation
(right) states of the PZT polarization. In the former case the ordering is predicted to be ferromag-
netic, while in the latter it is predicted to be antiferromagnetic at low-temperatures.138

the rich variety of electronic and magnetic phases present in the manganites complicates this situation;

it is far from clear what the temperature dependence of this coupling behavior is. Recently Lu et al.

have shown that for LSMO / BTO films at room-temperature, a depletion state can actually give rise to

a paramagnetic (PM) insulating phase, instead of an FM phase.146

The third mechanism of charge-mediated coupling occurs when charge screening modifies the mag-

netic anisotropy of a system. This mechanism is intimately connected to the previous two mechanisms,

since a reduction in magnetic moment will affect the magnetostatic energy and a change in the exchange

interactions of the system will affect the domain wall formation energy.95 Moreover, it is expected that

a changing orbital occupancy will also change the MCA of a system. These kinds of changes have been

demonstrated in various systems, including FePt and FeCo, as well as in ultrathin Fe films;147,148 very

thin layers are more likel to exhibit such coupling, since surface MCA will dominate their behavior.13

In summary, while there are various mechanisms of charge-mediated coupling, they are all generally

constrained to thin interface layers. In spite of this limitation, these mechanisms can yield sizable

magnetoelectric coefficients, as shown in Table 2.4.
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Table 2.4: Surface magnetoelectric coefficients (αS) for two kinds of charge-mediated coupling.95

Coupling Type Material System αS (Oe cm2 V−1) Reference

Exchange La0.8Sr0.2MnO3 / Pb(Zr0.2Ti0.8)O3 −6.3× 10−9 138, 140

Magnetic Moment
Fe / MgO (001) 1.1× 10−13 8

Fe3O4 / BTO 2× 10−10 137
1 ML Fe / PbTiO3 0.073 23

Strain-Mediated Coupling

Strain-mediated coupling is among the most widely studied mechanisms for linking electronic and mag-

netic order in ME heterostructures.6,7,9 Coupling may be achieved in a variety of geometries, such as

fibers or particles embedded in a matrix or laminar heterostructures.9 We shall primarily consider the

latter case. Ignoring thermodynamic and growth considerations, it is generally possible to deposit a

material onto a substrate of different lattice structure and chemistry. Depending on the structural re-

lationship between the film and substrate, one can grow fully coherent, epitaxial films with minimal

threading dislocations. Alternatively, the film may be partially or fully relaxed, leading to large disloca-

tion densities (ρ ∼ 1011 cm−2) and inhomogeneous properties around the local strain fields associated

with such dislocations.149–151 Strained growth can therefore be used as a means to manipulate the lattice

of a film and the most controllable and efficient coupling is achieved through coherent, epitaxial growth.

This approach has been successfully demonstrated in composite structures of BTO and various other

systems, including LSMO, LCMO, SrRuO3, and CoFe2O4.70,152,153 Upon cooling BTO transitions from

cubic to tetragonal (393 K), orthorhombic (278 K), and rhombohedral (183 K) phases, with concomitant

changes in lattice parameter.95 Strain transferred from the substrate to film causes changes in magnetic

anisotropy, as well as changes in atomic and electronic structure; in the case of the LSMO system strain

gives rise to changes in Mn–O–Mn bonds, as described in Section 2.3.2.95 This powerful control over

magnetic ordering is limited to situations where a sample can be heated or cooled. To be useful a device

must be capable of switching between an active and inactive state for a large number of duty cycles.

While it is possible in some cases to switch the electrical resistivity and magnetization of a film through

a structural phase transformation of the substrate, the design of a high density memory technology with
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small local heating elements is problematic.154

For more practical control of ordering, one can use an electrically-responsive laminar substrate to

dynamically tune strain in a well-controlled fashion, making them an excellent model to understand

coupling. Piezoelectrics such as Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN-PT) and PZT have been extensively

used with a range of magnetic layers, including LCMO, LBMO, Fe3O4, CoFeB, Fe, Ni, and more.95,155–159

Strain in these structures can act to reorient magnetization through magnetoelastic and magnetostatic

contributions, as well as enhance coercivity. Alternatively, strain can act to suppress magnetization by

enhancing the Jahn-Teller distortion in the manganites.160–162

2.5 Limits of Current Coupling Models

Thin-film ME heterostructures show considerable promise for use in novel spintronic applications, but

their implementation is hindered by a poor understanding of interfacial coupling mechanisms. The

LSMO / PZT system has received particular attention because of the high sensitivity of magnetic order in

LSMO to charge and strain states. Extensive work has been conducted by the Ahn group, who argue that

the mechanism of coupling is largely charge-transfer screening dominated.143 They show that charge

carrier modulation in the LSMO induces a change in Mn valency near the interface and they find that

coupling results from an interfacial spin reconfiguration resulting from different charge states.138,163

They also find that the coupling has a strong temperature dependence and is largest near the LSMO

magnetic critical temperature at 180 K (for this composition).140 However, Vaz et al. utilize primarily

non-local probes to investigate structural and magnetic ordering. Furthermore, they explore only the

ultrathin limit (< 4 nm) of LSMO, where charge effects are expected to dominate (see the discussion in

Section 2.4.3).

More insight is needed into thicker composites, where strain fluctuations may play a larger role.

Various strain states and textures that depend on film thickness have been observed in other mangan-

ites, such as La0.8Ca0.2MnO3, with important consequences for magnetic order.53,164 In general epitaxial

strain is thought to enforce a long range tetragonal distortion in the manganites, favoring a particu-

lar direction of the Jahn-Teller distortion of the eg orbitals.165–167 In LSMO this strained growth gives

rise to changes in the metal-insulator transition temperature and FM Curie temperature, as well as
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magnetic anisotropy.168–171 The LSMO / PZT system also shows a thickness and strain dependence on

TC .42,172 Still other groups have shown that the transport properties of the manganite layer are highly

dependent on layer thickness and strain relaxation.173 The effect of in-plane stress is debated, as re-

cent studies of manganite multilayers have shown a variation in coercive field with interfacial biaxial

strain.50,174 It is speculated that there is some critical thickness at which coupling crosses over from

purely charge-transfer-mediated to strain-mediated, but more work is needed.159 It is clear that there

is much uncertainty regarding the nature of coupling, as well as about the relationship between local

strain and magnetization.

An additional consideration is the direct relationship between FE polarization and Mn valence changes

at interfaces. There is considerable debate over the screening length for charge in this system; calcula-

tions of the Thomas-Fermi screening length vary, ranging from 0.2 to 1.9 nm.135,175 Previous studies have

revealed the presence of a dead layer in LSMO that is approximately 2–3 nm thick, depending on the

choice of substrate.176–178 However, prior work has employed primarily non-local X-ray absorption spec-

troscopy (XAS) techniques to characterize local valence states in LSMO / PZT.138,143 Because of the in-

timate relationship between charge screening, electronic phase, and magnetic order, a local, atomically-

resolved analysis of such screening is necessary. Lu et al. have recently proposed a model in which

polarization screening gives rise to the formation of either PM or FM ordering at room-temperature in

LSMO / BTO.146 This contrasts to the low-temperature AF and FM states predicted by Vaz et al., but

since few local room-temperature studies of magnetization in this system have been conducted, further

work is needed.

In this thesis we present a detailed, local study of atomic-scale structure, chemistry, and magnetiza-

tion in the LSMO / PZT system. We explore composites at and beyond the ultrathin limit using correlated

local probes of structure and magnetic order. We assemble a suite of characterization techniques across

a range of length scales that allow us to disentangle strain and charge effects on magnetization. This

allows us to develop a more comprehensive model of ME coupling in thicker composites. More funda-

mentally, we explore the underlying electronic effects governing coupling and provide new insight into

the magnetic phases present at interfaces in these structures. This new understanding will guide the
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implementation of these materials into the spintronics devices of the future, while the methods we have

developed may be extended to many other ME composites.
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Chapter 3: Techniques and Methods

3.1 Introduction

In this section we describe the techniques employed in this thesis. These techniques can be broadly

divided into structural and magnetic characterization, as shown in Figure 3.1. By correlating high-

resolution, local probes of structure and magnetism, we are able to map structure-property relationships

in these heterostructures.

Figure 3.1: Overview of the techniques used in this thesis.

3.2 Thin-Film Growth

There are many techniques for physical vapor deposition (PVD) of thin-films, including pulsed laser

deposition (PLD), molecular beam epitaxy (MBE), and sputtering.179 PLD has been developed in the

last several decades and is extensively used to synthesize oxide thin-films and ferroelectrics, since it

is possible to deposit high-quality thin-films relatively quickly and easily using this method.180 More-

over, through careful control of target stoichiometry and growth conditions, it is possible to synthesize

extremely sharp, phase-pure epitaxial thin-film heterostructures.181

An illustration of the PLD process is shown in Figure 3.2. A basic setup consists of a vacuum chamber,
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Figure 3.2: Schematic of a PLD chamber, illustrating the vacuum chamber, ablating laser, target
carousel, and substrate.179

which generally kept at high to ultrahigh vacuum (10−6 − 10−8 Torr), to minimize surface contamina-

tion.179 The sample substrate is mounted on a block that can heat it up to several hundred ◦C during

deposition. The source of material is a sintered ceramic target typically prepared by mixed-oxide syn-

thesis, mounted on a rotating carousel; each target rotates on the carousel to ensure uniform ablation

and it is easy to switch between targets. The vacuum chamber has a window with a quartz focusing

lens through which an intense laser beam is focused. This beam is typically generated by a Nd3+:YAG

or gas excimer laser, the former of which is typically frequency doubled twice to produce outputs of 355

and 266 nm. Such a laser is capable of delivering ∼2 J pulse−1 at repetition rates of tens of Hz, which

vaporizes the target, forming a plasma plume. Adatoms from the plume are deposited on the substrate,

where they form layers or islands, depending on the growth conditions.

The MBE technique is conceptually very similar to PLD; however, the source of growth material

is quite different. Rather than ablating a target with a laser, MBE uses Knudsen effusion cells, which

are essentially high-temperature crucibles that radiatively heat highly-pure elemental sources to their

sublimation temperature.4 A flux of atoms is emitted from these sources and deposited on a target

substrate in concert with the introduction of a small flow of oxygen or ozone. A shutter is placed over

each source to precisely time the emission of this flux to achieve very precise monolayer deposition of
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compounds. Another technique, sputtering, is also quite similar to MBE; however, instead of heating a

source, an electron beam bombards the material to heat it.4

3.3 X-Ray Diffraction

The venerable techniques of X-ray diffraction (XRD) allow for facile and non-destructive measurement

of important properties, such as lattice parameter, epitaxy, and thin-film layer thickness. Unlike optical

radiation, X-rays have a wavelength on the order of Ångströms, the same length scale as the atomic

bonds in a solid.182 Diffraction of collimated, monochromatic X-rays from periodically-spaced atoms in

a crystal can be described by the well-known Bragg law,

nλ= 2dsinθ (3.1)

in which n is the order of the reflection, λ is the wavelength of the incident radiation, d is the lattice

spacing, and θ is the angle of incidence of the X-rays.182 This equation will be satisfied when the total

path length of the X-rays is an integral multiple of the lattice spacing, leading to specific angles at

which the diffraction will be most intense. For a powder or polycrystalline sample, which contains

all possible orientations of lattice planes, the resulting pattern may be indexed to determine the space

group and symmetry of the underlying lattice. For epitaxial thin-film heterostructures, the orientation

of the underlying substrate generally dictates the orientation of the crystal grown atop it. For a well-

defined single-crystal sample, then, only a limited number of diffraction conditions will be accessible for

a given tilt of the crystal (Figure 3.3); however, these are generally sufficient to determine the epitaxial

relationship between the crystal and substrate.

In the case of a layered heterostructure or superlattice, there is a variant of this technique known as

X-ray reflectivity (XRR) that can be used to determine the thickness of the individual layers. When radi-

ation is incident on the surface of a crystal, part of that radiation is refracted and part of it is reflected

(both specularly and diffusely). Because the index of refraction for X-rays is less than unity, there exists a

critical angle of incidence (θC ≈ 0.2− 0.4◦) below which this radiation is totally externally reflected.183

Moreover, in the case of a laminar thin-film heterostructure, the incident radiation will be reflected by
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Figure 3.3: θ − 2θ diffraction pattern from an Fe / Fe3O4 / MgO (001) thin-film heterostructure.

each layer and—due to the path length difference between the layers—these reflected beams will inter-

fere with one another. This results in an oscillating interference pattern, as shown in Figure 3.4. The

periodicity of these “Kiessing fringes” is proportional to 2πt−1, where t is the thickness of the respective

layer. The determination of structure from such an interference pattern typically begins with some nom-

inal knowledge of layer structure and geometry, as well as known chemical scattering length densities.

From this information it is possible to construct a theoretical slab model, where each layer is approxi-

mated by a chemical scattering length density, thickness, and roughness. The scattering and diffraction

from each layer is then simulated as a function of angle-of-incidence and the resulting reflectivity profile

is calculated using the Paratt formalism.184 This process is repeated until the simulation converges to

the measured data.

3.4 Electron Microscopy

The techniques of electron microscopy offer unprecedented levels of analysis of local structure, chem-

istry, and strain state. These techniques are all complementary and form the characterization backbone

of this thesis.
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Figure 3.4: Calculated X-ray reflectivity for Au films deposited on Si substrate, illustrating the
interference of reflected beams from the multilayer.183

3.4.1 Transmission Electron Microscopy

Transmission electron microscopy (TEM) and its related techniques comprise the primary structural

and chemical characterization method used in this thesis. The interaction of an electron beam with

a thin foil specimen creates a number of simultaneous signals: among these, bright-field images and

diffraction patterns can be used to probe the crystal structure of a sample, while characteristic X-rays

and electron energy loss spectroscopy (EELS) can be used to determine local changes in chemistry.185

On most modern instruments a wide variety of information can be collected at once with Ångström or

better spatial resolution. At the frontier of electron microscopy, it is possible to generate real-world

conditions inside the microscope through customized holders. These include environmental and liquid

cells, straining, heating, magnetizing, and electrical biasing holders.186

Electrons possess a much smaller wavelength than optical radiation (pm versus nm, respectively).

As described by de Broglie, electrons can be considered as simultaneously both a particle and wave.

According to the Rayleigh criterion, the smallest resolvable distance for a visible light microscope is

given by,

δ =
0.61λ

µsinβ
(3.2)
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where δ is the resolvable distance, λ is the optical wavelength, µ is the refractive index of the viewing

medium, and β is the collection semi-angle of the magnifying lens.185

One can immediately see that for visible light in the 400–700 nm range, the smallest resolvable

feature is on the order of approximately 200–300 nm, much larger than most nanostructures. To resolve

a smaller feature size, one would need to shorten the wavelength of the incident radiation, which is

not possible with visible light. However, by using electrons instead of light it is possible to shorten this

wavelength further. We can estimate the (non-relativistic) equivalence between electron energy and

wavelength according to de Broglie as,

λ=
1.22

E1/2
(3.3)

where λ is wavelength given in nanometers and E is the energy of the electron in eV.185 For a 100 keV

electron this yields a theoretical wavelength of 0.004 nm, which is smaller than an atom. Such energies

are routinely attainable in a modern electron microscope, as shown in Figure 3.5. The main parts of the

microscope are the electron gun, focusing optics, specimen, and collection optics.185

The electron gun consists of a thermionic (typically LaB6) or field emission (W) source that is kept

near ultrahigh vacuum and acts to generate a source of electrons under heating, electric field, or some

combination thereof. These electrons are then accelerated to 60–70% of the speed of light under a

100–300 keV potential and passed through a series of collimating and focusing lenses. The beam may

be made parallel or converged onto the specimen, where it is scattered elastically and inelastically. It is

here that a variety of useful signals are generated, as shown in Figure 3.6; these include characteristic

X-rays, scattered electrons, diffracted electrons, secondary electrons, and visible light. Finally, forward-

scattered electrons are passed through a series of image collecting optics toward a photodetector that

records the intensity of the transmitted beam.

The range of signals simultaneously generated upon interaction between the electron beam and

sample, as well as the high spatial resolution of the probe, make TEM a highly effective means to probe

local atomic-scale structure and chemistry.
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Figure 3.5: Illustration of the TEM lens system showing the electron gun, focusing optics, and
collection optics, as well as optional X-ray and EELS detectors.187

Figure 3.6: Illustration of the signals generated when an electron beam is incident on a thin foil
sample.185

CHAPTER 3: TECHNIQUES AND METHODS



39

Figure 3.7: Schematic of the incident optics in STEM mode. The C1 and C3 lenses are active, but
the C2 lens is turned off. The C1 lens is used to control probe size and current, while the C2 lens
aperture is still used to control the convergence angle on the specimen.185

3.4.2 Scanning Transmission Electron Microscopy

Scanning TEM is a variant of traditional TEM in which the incident optics are arranged in such a way

as to converge the beam at the sample position. In particular, the second condenser lens (C2) is turned

off and a third condenser (C3) is used to focus and converge the beam to a small spot on the sample,

as shown in Figure 3.7.185 This results in a convergent beam with a large convergence angle and the

smallest possible probe. In STEM mode a series of scan coils (not shown) are used to raster the probe

over an area of the sample. This method allows for a highly localized signal to be collected from each

part of the specimen and in theory permits higher spatial resolution, but it is prone to scan error and can

easily damage beam-sensitive samples.188

In spite of its limitations, there are many benefits to using a STEM imaging mode. STEM affords

the user the highest possible spatial resolution of any real-space imaging mode, as well as simultaneous
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Figure 3.8: Illustration of scattering angles and annular collection apertures for a convergent STEM
probe. Scattering in excess of 50 mrad is termed high-angle annular dark field (HAADF) or “Z-
contrast” imaging.185

measurement of local chemistry, bonding, and valence.188 In addition, the use of an annular dark field

(ADF) detector allows the user to isolate purely elastically scattered electrons. As shown in Figure 3.8,

these electrons are scattered to high angles; for angles in excess of 50 mrad, one may use a high-angle

annular dark field (HAADF) detector to isolate electrons scattered to high angles. It is found that the

probability of such scattering is proportional to the atomic number (Z) of the scattering atom and is

sometimes termed “Z-contrast” imaging. This contrast mechanism allows the user to easily distinguish

regions of high and low atomic number. For instance, Figure 3.9 displays a PZT sample, in which the

bright, large dots mark columns of Pb atoms (Z = 82) and the smaller, darker dots mark columns of Zr

/ Ti atoms (Z = 40 / 22).

3.4.3 Transmission Electron Microscopy Image Simulation

The proper interpretation of high-resolution TEM and STEM micrographs is quite difficult, owing to the

fact that a generated image results from a complex interaction of factors, including185:

• Sample alignment with respect to the electron beam

• Sample thickness
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Figure 3.9: STEM-HAADF image of the piezoelectric PZT, with bright Pb columns and darker Zr /
Ti columns.

• Objective lens defocus

• Chromatic aberration

• Electron beam coherence

For instance, even small modifications in defocus can invert the contrast of an image, making direct

interpretation of bright and dark spots impossible. To address these issues, it is common to simulate

images for a variety of sample and beam conditions. These are then compared to the experimental

images to enable direct interpretation of contrast. In this way even extremely complex structures, such

as zeolites, can be quantitatively interpreted.189

The two main image simulation techniques are Bloch wave and multi-slice calculations, also termed

real-space and reciprocal-space image simulations, respectively.185 In the Bloch wave approach, we con-

sider that, while many diffracted beams are formed upon interaction of an electron beam with a highly

symmetric crystal, only a small number of Bloch waves give rise to the actual image.190,191 Mathemati-

cally, we can describe the propagation of these waves as,

Ψn+1(r) = [Ψn(r)Pn+1(r)]⊗ qn+1(r) (3.4)
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Figure 3.10: Ge lattice images calculated using the Bloch wave approximation.185 The arrows
indicate the contrast resulting from the interaction of one (top arrow), two (middle arrow), and
three (bottom arrow) Bloch waves.

where Ψ describes the electron wave, P is the real-space propagator of the electron wave in the micro-

scope, and q is the real-space phase grating (specimen).185 This allows us to approximate an HRTEM

zone-axis image using as few as three Bloch waves, as shown in Figure 3.10. This method is computa-

tionally efficient, but it is limited in that we only consider diffracted wave propagation in the forward

direction of scattering.185

The alternative to Bloch wave calculations is the multi-slice (reciprocal-space) approach. This method,

while more computationally-intensive, is generally more accurate, since we calculate all the diffracted

beams generated by a point scatterer in the crystal.185 As its name implies, the multi-slice method sub-

divides the crystal lattice into a number of projection planes, each of which acts as a diffraction grating.
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Figure 3.11: Illustration of the multi-slice simulation method. The sample is first approximated
by breaking it up into an array of “projection planes.” The incident electron beam is then passed
through the first of such planes and all the scattered beams in reciprocal space are calculated. These
calculated beams are then passed through the second plane and the calculation is repeated. This
process is repeated until the beam has passed through all the slices.185

As shown in Figure 3.11, the incident beam is propagated through such a plane and all the diffracted

beams are calculated. These beams are then passed on through free space to the next projection plane,

and the calculation is repeated until the number of planes equals the thickness of the crystal.

It is immediately apparent that the complexity of such a calculation grows rapidly, since we calculate

scattering in all of reciprocal space. On a modern desktop computer most multi-slice calculations do not

take more than a few hours, so it is generally desirable to use this method. There are many programs

that have been developed for image simulation, including JEMS, MacTempasX, and QSTEM.192–194 The

latter program, QSTEM, has been used in this work and employs multi-slice methods to simulate images.

3.4.4 Electron Energy Loss Spectroscopy

As described in Section 3.4.2, many signals are generated when the electron beam interacts with a sam-

ple. In particular, some energy is lost to inelastic scattering with the sample, leading to a net reduction

in the energy of the incident electron. This electron energy loss (EEL) can be measured using a magnetic

CHAPTER 3: TECHNIQUES AND METHODS



44

Figure 3.12: Schematic of an EEL spectrometer. (A) Shows the plane perpendicular to the applied
magnetic field, with the dashed lines indicating deviations in electron paths due to energy loss.
Solid lines indicate zero-loss electrons. (B) Shows the plane parallel to the magnetic field.195

prism in a manner analogous to mass spectroscopy, as shown in Figure 3.12.195 In this setup, a magnetic

field on the order of 0.01 T is applied, causing electrons to precess through a 90◦ angle. The bending

radius depends on the electron mass, charge, and velocity, according to,

R=
mv

eB
(3.5)

A dispersion of energies therefore results in a range of different bending radii, which can be recorded

on a detector to produce an energy-loss spectrum. Such a spectrum is shown in Figure 3.13, which

broadly defines three regions of energy loss: the zero-loss, low-loss, and high-loss. The zero-loss peak is

intense and contains contributions from both the elastically-scattered and unscattered electrons (or those

below the resolution-limit of the detector).185 The higher energy loss regions correspond to plasmon,

intra-atomic, and ionization transitions that can be quite difficult to interpret, but offer a wealth of

information about the local chemistry of the sample.195

While it is possible to use a conventional TEM imaging mode to capture EEL spectra, in practice

STEM imaging is much more common. As previously described, in STEM the C2 lens is turned off and
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Figure 3.13: Example of an EEL spectrum, with the zero- (elastically-scattered), low-, high-loss
regions indicated. The intensity of the low-loss region is orders of magnitude higher than the
higher energy loss regions, which fall off in intensity according to a power law.185

a C3 lens is used to converge the beam to a small spot on the sample. This spot is then rastered and an

EEL spectrum is collected at each point on the sample. This method offers enhanced spatial resolution,

as well as the possibility of elemental mapping. Figure 3.14 shows an example of such mapping at an

LSMO / STO interface.196 Using aberration-correction it is possible to achieve better than 0.5 eV energy

resolution, with sub-Ångström spatial resolution.68

This kind of local chemical information is essential to understand the behavior of oxide thin-films,

which typically deviate near surfaces or interfaces. Unlike other chemical analysis techniques, such

as energy-dispersive X-ray spectroscopy, EELS offers unrivaled spatial resolution and single-atom sensi-

tivity.185 This permits direct mapping of local bonding and oxidation states—features that dictate the

magnetic and electronic phase of the manganites.197

3.4.5 Geometric Phase Analysis

Geometric phase analysis (GPA) allows for direct measurement of local strain using TEM micrographs. In

contrast to indirect scattering techniques, such as XRD, this method allows the user to resolve local strain

states to better than 0.1% strain, with 1 nm spatial resolution.198–200 The technique has been primarily

applied to studies of strained-silicon transistors, where strain is used to enhance electron mobility.201

However, it has also been used to explore structural distortions and growth-induced strain effects in the

manganites.202–205
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Figure 3.14: Elemental mapping of an La0.7Sr0.3MnO3 / SrTiO3 thin-film heterostructure inter-
face. (A-C) Correspond to the La M , Ti L, and Mn L edges, respectively. (D) Shows a false-color
combination of the three maps.196

While there are different variants of GPA, they all make use of the phase shift induced by local lattice

displacements.199 First an HRTEM image is taken along a particular zone axis and a region of reference

is selected. Displacements relative to this reference region are then calculated using the equation,

Pg(r) =−2πg · u(r) (3.6)

where Pg(r) is the geometric phase and u(r) is the component of the displacement vector in the direction

of the reciprocal lattice vector g.199 It is important to note that the displacement is averaged over the

entire thickness of the thin foil specimen. After calculating the geometric phase of two non-collinear

diffracted beams, it is possible to determine the displacement field according to,

u(r) =− 1

2π

�
Pg1
(r)a1 + Pg2

(r)a2

�
(3.7)

where a1 and a2 are the real-space basis vectors for the reciprocal space lattice defined by g1 and g2.

Differentiating the displacement field yields the two-dimensional deformation tensor (ϵi j)
199,

ϵi j =
1

2

�
∂ uy

∂ x
− ∂ ux

∂ y

�
(3.8)
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Figure 3.15: Calculation of the strain field in a transistor, with the color map corresponding to the
ϵx x component of local strain.201

The result of such an analysis is shown in Figure 3.15, which shows the strain field around the

source and drain of a Si80Ge20 transistor.201 The immense utility of this measurement is clear when one

considers that all the strain information has been extracted from one TEM micrograph; moreover, it is

possible to simultaneously map local chemistry and defects, which can then be directly correlated to

strain.

3.4.6 Scanning Electron Microscopy

The technique of scanning electron microscopy (SEM) is a natural complement to TEM. As its name

implies, in this technique a focused electron beam is rastered across the surface of a sample and signals

are collected from various points on the sample. This setup is shown in Figure 3.16. In contrast to

TEM, which samples beams scattered through a thin foil specimen, SEM operates on the short-range

interactions of an incident electron beam with the surface of a material—which generates a variety of

useful signals (Figure 3.6).206

This limited interaction arises from the inelastic scattering of primary electrons; each collision re-

duces the energy of the primary electron until they fall to rest and are absorbed into the sample.188 The

penetration depth of the electron is given by the equation,

ρR≈ aE r
0 (3.9)

CHAPTER 3: TECHNIQUES AND METHODS



48

Figure 3.16: Schematic of the scanning electron microscope, illustrating the instrument optics,
control system, and detectors.188

Figure 3.17: Illustration of the secondary electron interaction volume for increasing primary elec-
tron energy (E0) and increasing atomic number (Z).188

where R is the electron range, ρ is the density of the sample, E r
0 is the incident electron energy and a is

a constant.206 Typical penetration depths for 10–30 keV electrons range from 0.8–6.4 µm.188 This equa-

tion shows that with increasing atomic number Z the penetration depth will decrease, primarily because

of increased backscattered electron generation. The resulting, teardrop-shaped interaction volume is

shown in Figure 3.17.

Because of these features of secondary electron generation, SEM is largely limited to probing near

the surface of a material. In this regard SEM is an excellent complement to TEM, since it provides a

high resolution probe of surface morphology and chemistry (as described in Section 3.4.7), and sample

preparation is quite easy—generally the only requirements are a small (1–2 cm) conductive sample.188
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3.4.7 Energy-Dispersive X-Ray Spectroscopy

As mentioned in the previous section, SEM may be used to resolve both surface morphology and chem-

istry. When an incident electron is inelastically scattered by a crystal, some of the radiation may be

given off in the form of X-rays (Figure 3.6). These X-rays have characteristic energies corresponding

to intra-atomic transitions in the scattering atom and are probed in the energy-dispersive X-ray spec-

troscopy (EDS) technique.188 According to quantum mechanics, an atom can only absorb or emit energy

in certain quanta corresponding to electronic transitions between energy levels.207 For the hydrogenic

atom, the de-excitation process of energy loss and photon emission can be described by the equation,

hf = RZ2

�
1

n2
l

− 1

n2
u

�
(3.10)

where nu and nl are the upper and lower energy levels in the transition, R is the Rydberg energy (13.6

eV), Z is the atomic number, and hf is the energy of the emitted photon.188 For non-hydrogenic atoms

this calculation is more complex and must account for interactions between electrons—nonetheless, each

characteristic X-ray emitted corresponds to a specific intra-atomic transition that can be indexed. The

full X-ray energy spectrum (shown in Figure 3.18) may then be used as a kind of chemical fingerprint

for a particular atom.

Figure 3.18: X-ray emission spectrum from a cauliflower. The peaks in the spectrum correspond to
specific intra-atomic transitions and can be indexed to specific elements.185

A chemical map of a region may be constructed by rastering the electron beam across the sample and

collecting a full emission spectrum from each point, as shown in Figure 3.19. Such maps can be directly
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overlaid onto the local morphology of a sample to identify secondary phases, precipitates, and other

features. This method is primarily limited by the number of X-ray photons generated (a small probe

yields fewer photons) as well as the incident energy of the electron beam.188 Moreover, EDS is poorly

suited to detecting light elements, because of their small X-ray yield, and requires careful processing

to remove background contributions (Bremsstrahlung).185,188 However, atomic-resolution EDS mapping

is now routinely possible using multiple windowless Si-drift detectors available in aberration-corrected

microscopes.208

Figure 3.19: (A) Secondary electron image of a ferrous powder metal compact and Ni additive
particle. (B-D) Corresponding Si K , Ni K , and Fe K characteristic X-ray maps, clearly distinguishing
the Ni particle from the surrounding Fe matrix.209

3.5 Magnetometry

We next describe the techniques of bulk and depth-resolved magnetometry employed in this thesis.

These techniques are an excellent complement to electron microscopy and offer a means to correlate

local structure to magnetization.

3.5.1 Vibrating Sample Magnetometry

To investigate the bulk properties of magnetic thin-film materials, it is necessary to use a highly sensitive

magnetometer. The technique of vibrating sample magnetometry (VSM) relies on the flux change in a

coil when a magnetized sample is vibrated next to it at approximately 40–100 Hz, as shown in Figure

3.20.210 The locally varying magnetic field of the sample induces an electromotive force (emf) in the

“pickup” coil, which is fed into a lockin amplifier sampling at the frequency of vibration. A magnetic

field is applied to the sample and the emf is measured as a function of this field. This is compared to a

reference magnet vibrating at the same frequency, which enables measurement of very small magnetic

moments (10−5 Oe). For thin-film samples it is generally possible to neglect demagnetizing fields and it
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is possible to precisely measure the hysteresis of a sample.210

Figure 3.20: Schematic of a vibrating sample magnetometer, showing the reference magnet and
sample. The sample is placed in a magnetic field generated by a superconductor, permitting the
application of large fields, up to several T.210

3.5.2 Magneto-Optical Kerr Effect Magnetometry

In contrast to bulk VSM techniques, the magneto-optical Kerr effect (MOKE) is commonly used to probe

the surface magnetization of a material or thin-film. Using this method it is possible to achieve highly

sensitive magnetic measurements, down to a monolayer of Fe.211 In addition to this sensitivity, the ef-

fect is robust and can be conducted under various stimuli (such as heat or electric field).138 It is even

possible to distinguish different layers of a magnetic thin-film heterostructure, making this a power-

ful complement to bulk magnetic characterization methods that sample the overall magnetization of a

device.212,213

MOKE occurs when a plane-polarized beam of light is specularly reflected off the surface of a mag-

netic material in the presence of a magnetic field.214 From a classical perspective, the electric field of

the light generates motion of the electrons in the medium: in the absence of an applied magnetic field,
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Figure 3.21: Illustration of the decomposition of linearly-polarized light into left- and right-
circularly polarized modes upon refraction from a magnetized medium.214

the electron orbits experience the same force from both left and right circular polarizations; but when

an external magnetic field is applied, an additional Lorentz force exerted on the electrons and the two

orbits are no longer the same. Mathematically we may describe this behavior in terms of the dielectric

tensor ε,

ε= N2


1 iQ 0

−iQ 1 0

0 0 1

 (3.11)

where N is the refractive index and Q is the magneto-optical (Voigt) constant of the material.214 In the

presence of magnetizing medium the incident light decomposes into left- and right-circularly polarized

modes,

n= N(1± gQ) (3.12)

where g is the direction cosine between the propagation vector of the light and the magnetization, as

shown in Figure 3.21.214

The more rigorous quantum mechanical model accounts for spin-orbit coupling between the local

magnetic field inside the material and the unequal populations of spin-up and spin-down electrons.211

Using the Heisenberg model and Kramers-Heisenberg dispersion formula, Hulme was able to calculate

the different refractive indices for the two polarizations of light caused by the spin-orbit interaction.215

This model was further refined by Argyres using perturbation theory to give the correct magnitude of

splitting.216
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Practically a MOKE measurement is conducted using a pair of crossed polarizers to determine the

degree of rotation from s to p polarized light reflected off a magnetic sample. MOKE has the advantage

of being able to detect tiny magnetic moments (∼ 10−12 emu) near the surface of a material and can

be equally well applied to multilayers and ultrathin (monolayer) films.214,217 Measurements can be

conducted in ambient conditions, under vacuum, or during heating and cooling cycles. Magnetic fields

of up to several T can be applied, as can electrical biases.163 Information about magnetic hysteresis,

surface anisotropy, and interlayer exchange coupling can all be attained with this technique.218

3.5.3 Polarized Neutron Reflectometry

Polarized neutron reflectometry (PNR) is a complementary scattering technique for measuring depth-

dependent magnetic information across buried heterostructure interfaces.219 Cold neutrons, generated

by a reactor or pulsed source, possess a wavelength between 2–40 Å, making them an excellent probe

for condensed matter.220 Neutrons also possess a nuclear spin that interacts with the magnetic induction

present in a sample—yet they are charge neutral and can probe deeply into most materials.221

A typical neutron reflectometry experiment is conducted in a manner analogous to the XRR exper-

iment described in Section 3.3. Below the critical edge neutrons will be totally externally reflected; as

their angle of incidence is increased they will begin to diffract off the various layers of the crystal, creat-

ing a periodic oscillation in the reflectivity. The first Børn approximation of the reflectivity is then given

by,

R≈ 1

Q4
z

|4π
L∑

l=1

[(N b)l − (N b)l−1]ex p(iQzdl)|2 (3.13)

where N b is the chemical scattering length density of the lth layer, Qz is the momentum transfer vector

parallel to the film normal, and dl is the distance of the lth layer’s interface below the surface.222 In the

presence of a magnetic induction B the total interaction potential seen by the neutron becomes,

U(z) = Un(z) + Um(z) =
ħh2

2m
N(z)b(z) +B · ŝ (3.14)

where ŝ is the neutron spin operator.222,223 Because the neutron is a spin 1/2 particle, it may take one
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Figure 3.22: Schematic of the reflection of a polarized beam of neutrons from magnetized sample.
(A) shows that for uniform M parallel to the guide field H only non-spin-flip occurs, while (B) shows
that when a perpendicular component of M is introduced, spin-flip scattering occurs.222

of two polarization states with respect to the applied magnetic field (H), which we term parallel (+) or

antiparallel (−). In a typical neutron reflectometry experiment we first polarize the beam using a known

guide field (Hp). The polarized beam then interacts with the local induction of the sample (Bs) and its

spin state change is recorded using a third, analyzer field (Ha). For Ha ∥ Hp we can then define four

reflectivities: two “non-spin-flip” reflectivities, R++, R−−, and two “spin-flip” reflectivities, R+−, R−+.222

This is illustrated in Figure 3.22 for a magnetized sample; simply put, a component of magnetization

perpendicular to the guide field will induce neutron spin-flipping.

One can record these four scattering cross-sections as a function of incidence angle to produce a

reflectivity profile, as shown in Figure 3.23.A. To fit this profile one constructs a slab model consisting

of layers of different chemical and magnetic scattering length density (Figure 3.24). The reflectivity is

then calculated using the one-dimensional Schrödinger equation, while iteratively fitting to known film

parameters.219,222,224 The end result is a calculation of nuclear and magnetic scattering length density

profiles, the latter of which can be directly translated into local magnetization, as shown in the bottom

half of Figure 3.23.

In contrast to bulk magnetic characterization methods such as VSM, which sample all magnetic

material, PNR makes it possible to isolate individual magnetic layers down to 2 Å, and measure absolute
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Figure 3.23: An example of polarized neutron reflectometry data collected at 300 (A) and 170 K
(B) for an LSMO / SRO superlattice. The resulting magnetization depth profiles are shown in the
bottom half of each figure.225

Figure 3.24: Illustration of the slab model of nuclear and magnetic scattering length density used
to calculate a reflectivity profile. The measured data are iteratively fit until an accurate model of
magnetic and chemical structure is attained.224
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magnetizations smaller than 30 emu cm−3.219 PNR is also non-destructive and, since neutrons are so

weakly interacting, samples can be placed in various in situ holders and environments.226,227 As already

described, neutron models benefit immensely from local information about chemistry and structure,

making them an excellent complement to the previously discussed techniques of TEM, EELS, and XRD.

3.6 Density Functional Theory

Density functional theory (DFT) is a powerful computational method for estimating the ground-state

energy of an ensemble of atoms.228 Using DFT it is possible to calculate a variety of physical properties,

including the electronic, thermal, optical, and magnetic response of a system.

We begin with the binding energy (Ebind) of a simple diatomic molecule, illustrated in Figure 3.25.

In this model the binding energy of the system is given by the equation,

Ebind(R) = E0(R) +
ZAZB

R
− EA− EB (3.15)

where E0(R) is the ground-state energy, R is the distance between nuclei, and EA and ZA are the atomic

energy and charge of atoms A and B.228 The Hamiltonian for N electrons is,

Ĥ = T̂ + V̂ee + V̂ (3.16)

where the kinetic energy operator T̂ , the electron-electron repulsion operator V̂ee, and the one-body

operator V̂ are defined as follows,

T̂ =−1

2

N∑
j=1

∇2
j (3.17)

V̂ee =
1

2

∑
i ̸= j

1

|ri − r j | (3.18)

V̂ =
N∑

j=1

v(r j) (3.19)
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Figure 3.25: Binding energy curve for a diatomic molecule. R0 is the bond length and 1
2
ħhω is the

zero-point energy.228

The ground-state energy must satisfy the variational principle,

E =min
Ψ
〈Ψ|Ĥ|Ψ〉 (3.20)

where the minimization is applied to all antisymmetric N -particle wavefunctions and E is equivalent to

E0(R) in Equation 3.15. Ψ is commonly approximated using a variety of methods, including Hartree-Fock

and coupled cluster approximations, Møller-Plesset perturbation theory, and Greens functions.229–231

In DFT we define an electron density n(r), such that n(r) d3r is the probability of finding any electron

in a volume d3r about r.228 We then approximate the kinetic energy density of a non-interacting, spin-

unpolarized system as,

T T F = as

∫
d3rn5/3(r) (3.21)

as = 3(3π2)2/3/10 (3.22)

The interelectron repulsion is modeled by the electrostatic self-energy of the charge density (Hartree
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energy) as,

U =
1

2

∫
d3r

∫
d3r ′

n(r)n(r’)
|r− r’| (3.23)

The one-body potential is given by,

V = 〈V̂ 〉=
∫

d3rn(r)v(r) (3.24)

And finally we minimize the sum of these three energies according to the constraint,

n(r)≥ 0

∫
d3rn(r) = N (3.25)

This is the basic form of DFT first described by Thomas and Fermi.232,233 Various other approximations

are commonly used, including density functionals, the local spin density approximation (LDA), and the

generalized gradient approximation (GGA), which permit more precise determinations of energies.228

Using these methods it is possible to simulate an array of materials properties that can be correlated

to experimental techniques. From these simulations one can isolate various features of a system to

determine the major contributor to a phenomenon of interest. Such simulations can also guide materials

selection and experimental design; while computationally-intensive, they are often more efficient than

laboratory “trial and error” methods.

An example of the power of this technique is given in Figure 3.26. Here DFT is used with the GGA

to calculate the magnetic ground state of a La0.7Sr0.3MnO3 / BaTiO3 / La0.5Ca0.5MnO3 / La0.7Sr0.3MnO3

heterostructure.234 Figures 3.26.A-C show various magnetic configurations assuming different directions

of the ferroelectric polarization in the BaTiO3 layer. This information may be compared to experimental

results and can provide deep insight into the mechanisms behind magnetoelectric coupling in thin-film

oxide heterostructures.
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Figure 3.26: DFT-GGA calculations for a La0.7Sr0.3MnO3 / BaTiO3 / La0.5Ca0.5MnO3 /
La0.7Sr0.3MnO3 heterostructure. (A-C) show magnetic configurations for different ferroelectric po-
larizations and ground states. (D) shows the calculated metal-oxygen bond displacements as a
function of position. (E-G) are plots of the tunneling transmission in the two-dimensional Brillouin
zone for configurations A-C.234
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Chapter 4: Interface Effects on Magnetization in Ferrous Thin-Films

4.1 Introduction

In this first study we explore the interfacial properties of Fe /MgO thin-film composites. This model sys-

tem allows us to assemble a set of techniques to correlate local structure, chemistry, and magnetization

for the subsequent studies described in this thesis.

Fe / MgO tunnel junctions have received much attention for their use in hard drive read heads and

other spintronic applications. This system is particularly interesting because of its magnetoresistive be-

havior and the abundance and low cost of its constituent elements. However, many questions remain

about how the structure and chemistry of the Fe / MgO interface mediates magnetic behavior. In this

study we report on transmission electron microscopy, electron energy loss spectroscopy, and magnetic

characterization of Fe / MgO composite films with various morphologies. We explore relationships

between film morphology, intermixing, and the resulting effects on magnetic structure. We find the

presence of oxidation at the Fe / MgO interface, with a detrimental impact on the saturation magneti-

zation of the composite. We also observe changes in coercivity and magnetocrystalline anisotropy with

film morphology and thickness. These results will inform the design of MgO-based tunnel junctions

and improve our understanding of how processing conditions, resulting in morphological and chemical

changes such as oxidation, affect magnetization.

4.2 Background

The Fe / MgO system has been widely studied for its low-dimensional magnetic behavior, as well as its

potential use in magnetoresistive tunnel junctions for memory applications. A small lattice mismatch of

∼3.5% upon a 45◦ in-plane rotation of the Fe lattice enables the growth of high-quality films according

to the
�
Fe [100](001) ∥MgO [110](001)

�
orientation relationship.27,235,236 By varying the deposition

temperature and rate, it is possible to grow a wide range of Fe film morphologies, ranging from discrete

islands to connected structures and continuous films.237 Many studies have focused on an enhancement
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of magnetization in ultrathin Fe films, as well as magnetoresistive behavior in Fe /MgO / Fe tunnel junc-

tions.20,24,238,239 More recently the Fe / MgO system has been used as a canvas to explore relationships

between microstructure and magnetism for potential device applications.8,240–242

It is known that Fe island coverage and interconnectivity can introduce configurational magnetic

anisotropy that dominates over MCA.243 This results in a rounding of hysteresis loops that depends on

island size and distribution, interfacial strain, and intermixing at the Fe / MgO interface.244 There has

also been much debate about the potential formation of an interfacial iron oxide layer and its effect

on magnetic order.245–247 Tunnel barrier oxide thickness and composition are crucial design parame-

ters in magnetic tunnel junctions: a competing iron oxide layer could increase the magnetoresistance

of the junction to unusable levels and lead to unpredictable device behavior.248,249 Likewise, the pres-

ence of interface defects or intermixing can change the transport behavior of the junction.250 Electron

microscopy is an ideal probe of the Fe /MgO interface, enabling simultaneous high-resolution character-

ization of chemistry and structure. The use of TEM and EELS makes it possible to identify the presence

of any significant oxide layers while also exploring the effect of growth parameters on interdiffusion,

roughness, and Fe film morphology. These measurements can then be correlated with changes in MCA

measured by bulk magnetometry. This combination of techniques offers an improved understanding of

the processing-property relationships necessary for the design of MgO-based spintronics.

4.3 Sample Growth

Samples were first synthesized by electron beam deposition: Fe films of three thicknesses (10, 20, and

30 nm) were then electron beam deposited at 500 ◦C at a rate of 0.2 nm s−1 onto MgO (001) substrates.

Each film was subsequently capped in a nominal 5 nm layer of Au, deposited at 30 ◦C and a rate of 0.5

nm s−1. X-ray diffraction and fluorescence measurements were performed on the samples to confirm the

orientation, crystallinity, and thicknesses of the Fe films.

4.4 Electron Microscopy

Bright field cross-section TEM images reveal the Fe island structure and morphology in the films. Figure

4.1 shows TEM images along the MgO <100>, <011>, and <012> zone axes of the films, with Fe
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Figure 4.1: Sequence of bright field TEM images illustrating the evolution of Fe island morphology
and interconnectivity with increasing Fe thickness along MgO <100>, <011>, and <012> zone
axes. A-B, C-D, and E-F correspond to 10, 20, and 30 nm Fe thicknesses, respectively. Insets show
high resolution images of each Fe / MgO interface and arrows indicate the boundaries of the Fe /
MgO intermixed region.

layer thickness increasing from top to bottom. At the smallest Fe film thickness (Figures 4.1.A and

4.1.B) discrete islands ranging in thickness from 5–10 nm are clearly visible. The islands are spaced

approximately 10 nm apart and appear to show faceting along their edges. A region of light contrast is

visible between the bottom edge of the islands and the top of the MgO substrate.

As shown in Figures 4.1.C and 4.1.D, as the film thickness increases the islands begin to coarsen

and exhibit the formation of small interconnecting regions. The nominal island thickness is 20 nm,

with interconnecting regions approximately 5 nm thick and 10 nm wide. The faceting evidenced in the

previous film remains, as does the band of light contrast below the islands, which appears thinner in

the <100> orientation compared to the <120> orientation. The 30–nm film (Figures 4.1.E and 4.1.F)

consists of a 30 nm continuous Fe layer, capped by small Fe islands ranging in size from 5–10 nm. At

this point the island caps show more rounded edges instead of the facets previously observed. The layer
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Figure 4.2: SEM plan-view images illustrating the evolution of Fe island morphology with thickness.
(A) shows discrete, equiaxed islands. (B) shows connected, anisotropic islands, while (C) shows
the appearance of a new layer of discrete, equiaxed islands.

of light contrast at the Fe-MgO interface is not visible in these samples.

High-resolution cross-section TEM micrographs (see insets of Figure 4.1) demonstrate the crys-

tallinity of the Fe islands and MgO substrate, as well as the uniformity and smoothness of the interface.

The islands themselves appear to be largely single-crystalline and faceted. The cross-section TEM micro-

graphs are complemented by scanning electron micrographs that offer a two-dimensional plane view of

the surface of the films. In Figure 4.2.A the 10–nm Fe film appears to consist of discrete, equiaxed islands

∼25 nm in diameter. The 20–nm Fe film (Figure 4.2.B) exhibits coarsening, enhanced island coverage

and elongation of the islands to ∼80 nm. The surface morphology of the ∼30 nm Fe film (Figure 4.2.C)

is similar to that of the 10–nm Fe film, consisting of equiaxed islands approximately 30 nm in diameter.

4.5 Chemical Mapping of Interface Valence

Figure 4.3 shows a bright field STEM image, as well as Fe K and Mg K edge STEM-EDS maps for the

20–nm film. The bright field image displays the aforementioned band of light contrast between the Fe

islands and the MgO substrate. The accompanying elemental maps show that this band is a transition

region of intermixed Fe and Mg approximately 15 nm thick. This appears to indicate diffusion of Mg

from the substrate into the Fe layer.

Previous EELS studies have shown that the strong Fe L3 and L2 white lines near 710 eV correspond

to the transition of electrons from spin-orbit split levels 2p3/2 and 2p1/2 to unoccupied 3d states.251,252

The relative intensity of these two peaks is strongly dependent on the d-band occupancy and the Fe
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Figure 4.3: STEM-EDS maps of the intermixing of a 20 nm Fe island and the MgO substrate. From
left to right, a bright field STEM image, Fe K edge map, and Mg K edge map are shown. The region
between the dashed lines corresponds to an intermixed interface layer.

valence.253,254 By measuring the L3/L2 ratio at various points across the Fe /MgO interface it is therefore

possible to estimate the degree of oxidation. Since the magnetic properties of Fe depend on the 3d

occupancy (see Section 2.3.1), this information is essential for understanding the magnetic behavior of

the composite.

As shown in Figure 4.4, strong Fe L3 and L2 peaks are visible and observed in the film layer away

from the interface, as is expected. The ratio of these peaks corresponds to a Fe2+ oxidation state (Figure

4.4.B). As the scan moves into the interface region, the intensity of these peaks begins to decay and

their ratio changes, indicating a transition to a Fe∼2.5+ oxidation state. Approximately 8 nm into the

transition region the Fe L3 and L2 peaks disappear, indicating the absence of Fe. This decrease in L3 and

L2 intensity is accompanied by an increase in the intensity of the O K edge at ∼537 eV, commensurate

with the increasing oxygen content of the substrate. The K edge consists of a small pre-peak at ∼529

eV that decreases moving from spots 1–4 and indicates a transition from FeO to Fe2O3. The strong peak

at ∼537 eV is largely independent of the oxide phase but indicates the presence of oxygen. Between

spots 5–11 a broad peak also forms at ∼557 eV that can arise from multiple-loss contributions.252 These

changes in the Fe L and O K edges appear to indicate both oxidation of the Fe layer and intermixing

with the underlying MgO substrate.
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Figure 4.4: STEM-EELS maps of the interface between a 20–nm Fe film and the MgO substrate.
(A) shows a series of spectra collected across the intermixed region at the points labeled in the
inset of (B). (B) shows the calculated Fe L3 / L2 peak ratios (squares) and the estimated Fe valence
(triangles) from Cosandey et al.255 Error bars correspond to the goodness of the Gaussian fit to the
two peaks at each spot.

4.6 Vibrating Sample Magnetometry

Figure 4.5 shows hysteresis loops for the films measured along <100> and <110> Fe crystallographic

directions. The Fe film volume was calculated using X-ray fluorescence measurements for the various film

thicknesses. The 10–nm and 20–nm films saturate at 1500 emu cm−3, while the 30–nm film saturates

near 1800 emu cm−3. These values are close to the expected bulk saturation of 1700 emu cm−3, but

may differ due to oxidation at the interface and experimental error.210 As shown in Figure 4.5.D, the

coercivity increases from approximately ∼238 Oe at 10 nm to ∼428 Oe at 20 nm and decreases to ∼55

Oe at 30 nm.

4.7 Film Coverage During Growth

The evolution of morphology and interface structure in these films can be measured by TEM and SEM

micrographs. As shown in Figures 4.1.A and 4.1.B, the thinnest 10–nm Fe film consists of discrete,

faceted islands similar in size to those previously observed during growth at 500 ◦C.29 Continuing growth

transitions to a layer-by-layer mode, as supported by other studies.244,256 This is supported by images

of the 20–nm film, which show that the islands have started to connect into a uniform layer (Figures
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Figure 4.5: In-plane magnetic hysteresis loops for 10, 20 and 30 nm Fe films (A-C, respectively)
along the Fe <100> and <110> directions. (A) shows little splitting between the two directions,
while in (C) an obvious anisotropy exists between the <100> and <110> directions. (D) shows
coercivities along <100> and <110> directions, with a peak at 20 nm.
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4.1.C and 4.1.D). For a thickness of 30–nm (Figures 4.1.E and 4.1.F), there is a continuous Fe layer with

some surface roughness. Because of the geometry of the sample, it is likely that the interconnectivity

corresponds to the coarsening observed in SEM images (Figure 4.2.B). The increase in coverage at 20–

nm also compares favorably to the minimum thickness for complete coverage predicted by helium atom

scattering.257 As growth continues the 30–nm film is again equiaxed with an average island size of 30

nm, corresponding to the formation of new Fe islands on a uniform sub-layer.

This behavior may be understood energetically using the model developed by Siegert and Plischke

(S&P), which employs Monte Carlo simulations to consider a diffusive current onto a substrate.258,259

The authors find that Fe is expected to form pyramidal islands with <011>–type facets in the initial

stages of high temperature growth. This faceting is seen in TEM micrographs of the thinner samples

along the corners of the islands (Figures 4.1.A and 4.1.C). In the S&P model, the faceted islands first

nucleate on the free MgO surface and then coarsen according to a power law (t1/4, where t = deposition

time). Initial growth proceeds in an island growth mode due to the high surface energy of 4.0 J m−2

for Fe (001) compared to 1.2 J m−2 for MgO (001).260 Island formation is preferred because of the high

electronegativity difference between Fe and O, as well as a high cohesive energy and dielectric constant

for MgO.257 A relatively high monomer diffusion barrier of 0.4 eV has been calculated, which leads to

a weak temperature dependence of adatom diffusion below ∼220 ◦C. At low-temperatures adatoms are

less mobile and these pyramidal structures remain stable even up to significant Fe thicknesses (200–300

nm).261 For our high temperature depositions at 500 ◦C, adatoms are able to overcome the barrier to

surface diffusion and coalesce into a uniform layer. Our results are supported by helium atom scattering

and infrared absorption studies that find that complete coverage is reached near 20 nm.257,262

4.8 Oxide Formation at the Fe / MgO Interface

The two thinner films exhibit a clear region of light contrast below the interface, a possible result of inter-

diffusion or oxidation. The diffusion of iron into the substrate is not unexpected at a 500 ◦C deposition

temperature.263,264 A simple calculation of the expected diffusion length can be conducted, according to
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the diffusivity relationship,

D̃ = 8.83 ex p
�−74.6 kCal

RT

�
cm2 s−1 (4.1)

measured by other authors, where R is the ideal gas constant.265,266 Assuming that the diffusivity is

largely independent of composition, we expect that the concentration profile will take the form,

C(x , t) = 1− er f

 x

2
p

D̃t

 (4.2)

where x is the depth normal to the interface and t the time. At the deposition temperature of 500 ◦C

and an approximate deposition time of 30 minutes, the concentration profile has an intermixed region

of ∼0.2 nm. The diffusion length estimated by EELS from the drop off in the Fe white line signals is

approximately 5–7 nm. The measured value is still an order of magnitude larger than the predicted

diffusion length; a possible explanation is that the diffusivity values used in the above calculation were

measured for bulk Fe powders and MgO single crystals, while diffusivities are expected to be much larger

in reactive thin-film structures.

In addition to spatial information about diffusion, EELS allows one to study the migration of oxygen

and oxidation of the Fe film at the interface. The oxidation state of the Fe away from the interface is∼2+,

but approximately 4–5 nm into the transition region it increases to ∼2.5+. This rise is accompanied by a

rise in the intensity of the O K edge, indicating the possible formation of a mixed FeO–Fe2O3 magnetite

phase. The presence of this magnetite region could reduce the saturation magnetization of the film by an

amount proportional to the oxidized volume. Assuming a saturation magnetization of 1700 emu cm−3

for bulk Fe and 473 emu cm−3 for Fe3O4 and layer thicknesses of dFe ≈ 16 nm and dFe3O4
≈ 4 nm, we

expect a saturation magnetization of ∼1413 emu cm−3, close to the observed saturation of ∼1500 emu

cm−3.13 Thus, EELS results indicate that oxidation could be a possible explanation for the film’s reduced

magnetization.
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4.9 Morphology Effects on Magnetization

MCA can be estimated from measured in-plane magnetic hysteresis loops. The work done W in the

magnetization process is equal to the area encompassed by the M −H loop,

W =

∫ M
0

HdM (4.3)

For cubic crystals we can define the anisotropy constants as: K0 = W100 and K1 = 4(W110 −W100).

Because these constants are based on relative changes in loop area, they should not be affected by

differences in domain wall motion.210 For the 20–nm film we estimate K1 = 5.9× 105 erg cm−3 and for

the 30–nm film K1 = 12× 105 erg cm−3. The measured value for the thinner film is on the same order

of magnitude as bulk Fe (4.8× 105 erg cm−3) but the anisotropy for the thicker is more than twice as

large (12× 105 erg cm−3).267 Martínez-Boubeta et al. have proposed that misfit energy introduced by

dislocations can introduce an interface contribution to the anisotropy constant.244,268 However, even the

formation of misfit dislocations cannot account for the measured anisotropy value of the 30–nm film.

Other potential sources of anisotropy are interfacial roughness, intermixing, and oxidation of the

Fe layer. While the films are relatively smooth, the latter two features have been observed by STEM-

EDS and STEM-EELS. The formation of an iron oxide layer in particular could account for some of

the observed changes in MCA. Previous studies of Co / Cu / Co / Fe3O4 / MgO (001) spin valves

have shown that the presence of the oxide layer can induce changes in coercivity and reorient the

easy axis of the bottom Co layer.269 Although the formation of an oxide layer is generally regarded as

thermodynamically unfavorable, there have been conflicting reports about its synthesis.245,247,249 Studies

of CoFe2O4 have shown significant diffusion of Mg into the oxide layer and a resultant reduction in

saturation magnetization.270,271 The transition from Fe2+ to Fe2.5+ observed in EELS may also be the

result of the formation of a mixed valence magnetite phase. Because MgFe2O4 is a thermodynamically

stable spinel phase, its presence at the Fe / MgO interface cannot be entirely precluded.

Changes in the shape of the hysteresis loops may offer insight into the effects of film coverage on the

magnetization process. The thinnest film (Figure 4.5.A) exhibits a rounded, sheared loop that progresses
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to a squarer loop for the 20–nm film (Figure 4.5.B) and finally a sharp, square loop at a thickness of

30–nm (Figure 4.5.C). The changes in loop shape correlate directly to changes in film morphology and

thickness measured by SEM and TEM. Previous work has indicated that the rounding of hysteresis loops

results from incomplete film coverage, as well as the introduction of configurational anisotropy from

layer-by-layer (Vollmer-Weber) island growth.244 The squaring of the hysteresis loops correlates to the

observed increase in coverage. Likewise, the increasing presence of these anisotropy terms is further

supported by a splitting in the <100> and <110> hysteresis loops: at 10–nm, the two loops are similar,

but as the film thickness a clear distinction between the two develops. This magnetic behavior coincides

with the transition from discrete islands to a uniform layer.

The observed changes in coercivity (Figure 4.5.D) can also be related to film morphology. The

thinnest 10–nm film consists of discrete islands with a coercivity of ∼238 Oe that increases to ∼428 Oe

at 20–nm as the islands begin to connect. By 30–nm the islands have fully formed into a uniform layer

and the coercivity drops to ∼55 Oe. Several effects resulting from the geometry of our samples may

explain this behavior. It has been observed in thin-film Co that HC is highly dependent on coverage and

film thickness.272,273 Coercivity in Co rises with increasing film coverage, but drops once a uniform layer

has been formed. We see similar behavior during the transition from a discontinuous island network to

a uniform film. This illustrates the importance of surface states and suggests that morphological barriers

to domain wall motion can greatly affect coercivity. These conclusions are supported by modeling that

predicts significant pinning and nucleation effects near island edges.274 Studies of granular Fe thin-films

also confirm an enhancement of coercivity up to ∼18 nm grain size, followed by a decrease proportional

to d−1 (where d = film thickness).275 It is thought that such grains possess a uniaxial surface anisotropy;

as the surface/volume ratio decreases, the surface term becomes less dominant. This surface anisotropy

may be responsible for suppression of superparamagnetic behavior, which would explain the increase in

coercivity going from 30 to 20 nm.276

We may also consider local demagnetizing fields present near the island surfaces, which act to oppose

the applied magnetic field.277 Because the demagnetizing field depends on geometry and volume, the

changing morphology and increasing thickness may affect HC between 10– and 20–nm. Lastly, strain and
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local chemistry should not be neglected. It is known that the magnetostriction of Fe reverses sign near

20 nm, the result of strain effects with increasing thickness.31 Similar strain effects have been observed

in FeCo, with HC attaining a peak near 30–nm and decreasing with increasing film thickness, the result

of strain gradients that form during growth.278 We discuss these strain effects further in Appendix A.

Interdiffusion between the film and substrate may also introduce additional pinning sites that compete

with increasing film coverage.279

4.10 Conclusions

Electron micrographs reveal a clear progression in Fe–film morphology as a function of thickness. Dis-

crete islands coarsen and interconnect until a uniform layer is formed, upon which a second layer begins

to grow. Cross-section TEM micrographs indicate that the islands are faceted and that the interface be-

tween the Fe film and MgO substrate is largely free of dislocations. Micrographs, EELS, and EDS maps

show evidence for the intermixing of Fe and Mg at the interface and the formation of an interfacial

iron oxide layer, which is consistent with the decreased saturation magnetization of some of the films.

Measured changes in coercivity, MCA, and the squaring of the hysteresis loops are related to increases

in island coverage and thickness. While the calculated anisotropy constants are on the same order

of magnitude as the expected values, there is evidence that the values are also affected by oxidation

of the Fe. We propose several mechanisms for the observed coercivity behavior and find a significant

dependence on film morphology, consistent with models of domain wall pinning. Future studies with

polarized neutron reflectometry, X-ray photoemission spectroscopy, and EELS mapping of the films will

make it possible to further quantify the magnetic and chemical nature of the interface with respect to

film structure and morphology. These studies will be complemented by local TEM analysis to develop

deterministic models of coercivity and hysteresis behavior.
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Chapter 5: Substrate-Induced Polarization Effects in LSMO / PZT

5.1 Introduction

In this section we discuss magnetoelectric coupling effects in LSMO / PZT heterostructures. Building off

the characterization toolkit established in the previous chapter, we employ a variety of local atomic-scale

structural, chemical, and magnetic characterization methods to show that charge and strain coupling

effects operate over different length scales. For the first time we are able to disentangle these effects

using local probes and we suggest ways to tune coupling by controlling layer geometries.

Magnetoelectric oxide heterostructures are proposed active layers for spintronic memory and logic

devices, where information is conveyed through spin transport in the solid-state. Incomplete theories

of the coupling between local strain, charge, and magnetic order have limited their deployment into

new information and communication technologies. In this study, we report direct, local measurements

of strain- and charge-mediated magnetization changes in the La0.7Sr0.3MnO3 / Pb(Zr0.2Ti0.8)O3 system

using spatially-resolved characterization techniques in both real and reciprocal space. Polarized neu-

tron reflectometry reveals a graded magnetization that results from both local structural distortions and

interfacial screening of bound surface charge from the adjacent ferroelectric. Density functional the-

ory calculations support the experimental observation that strain locally suppresses the magnetization

through a change in the Mn eg orbital polarization. We suggest that this local coupling and magneti-

zation suppression may be tuned by controlling the manganite and ferroelectric layer thicknesses, with

direct implications for device applications.

5.2 Background

Over the past decade great strides have been made toward electronics that utilize both electron charge

and spin.17,280 For instance, spin-transfer torque memories rely on the injection of a spin-polarized

current to flip the magnetization of a free layer in a MTJ.281,282 Direct control of spin polarization

would greatly optimize the performance of such devices, enabling more robust and efficient comput-
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ing architectures by conveying information through spin transport in the solid-state.1,2,283,284 Recent

advances in thin-film growth techniques have enabled the synthesis of oxide heterostructures where

strain and charge effects are used to reversibly control spin polarization and magnetization at inter-

faces.7,34,58,71,285–287 In particular there is growing interest in the connection between strain and mag-

netism in materials—most notably in the active tuning of magnetization via a coupling of local strain

gradients and spin states through the so-called “flexomagnetic” effect.288,289 Flexomagnetism describes

the interactions between strain gradients and local spins; the presence of varying local strains may

therefore give rise to a sizeable flexomagnetic contribution to magnetization.288–290

The current understanding of localized strain and charge-transfer effects on magnetization is limited,

since previous studies have relied on non-local probes that are unable to directly map strain and valence

changes.95 Studies of ME heterostructures of the FM, half-metal LSMO and the piezoelectric PZT exem-

plify the inherent complexity of these systems. Previous work has found that charge-transfer screening

of the adjacent ferroelectric layer is largely responsible for coupling in ultrathin (< 4 nm) LSMO films on

PZT138,140,163, while other studies have shown that variations in layer thickness and interfacial strain can

also affect magnetization.173,174,291–294 In these studies the local strain state of the LSMO / PZT interface

was not measured. The relationship between interfacial strain and chemistry is also an important consid-

eration in controlling the behavior of these materials, since previous studies have shown that strain fields

around dislocations can act as fast paths for interfacial interdiffusion in LSMO / PZT.295,296 It remains

unclear how local strains evolve as a function of layer thickness, how strain and charge-transfer screen-

ing act in concert to mediate interfacial magnetization, and, more importantly, how to deterministically

control this behavior.

To better understand flexomagnetism and ME coupling in oxides, it is necessary to move beyond

bulk probes of strain and magnetization toward local measurements of strain and interfacial charge-

transfer screening.297–299 Here we synthesize heterostructures with different local strain and polarization

states. Using a combination of local atomic and magnetic characterization, in conjunction with DFT

calculations, we find evidence for significant strain-induced magnetization changes. We show that large

strain changes occur throughout the magnetic layer and that they can be tuned by an appropriate choice
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of substrate thickness. Furthermore, we show evidence for interfacial charge-transfer screening, which is

secondary to dominant strain effects in thicker layers. Our analysis suggests that it is possible to favor a

particular coupling mode by an appropriate choice of FM and FE layer thickness. Furthermore, by using

local probes of structure and magnetization we are able to resolve strain and magnetization changes

within each layer that would be inseparable by bulk techniques.

5.3 Sample Growth

We used a substrate-induced self-poling technique to vary the electrostatic boundary conditions of the

bottom electrode interface, so as to pole the PZT away from (on LSMO) or toward (on SrRuO3 (SRO))

the substrate, which we term as poled-up and -down, respectively.300–304 Using this method it is possible

to control the polarization of the PZT without the need for large, leaky planar electrodes that would

preclude neutron measurements. Four heterostructures were deposited on single-crystal STO (001)

substrates by PLD. Oxide metal underlayers of either LSMO or SRO were deposited on a bulk STO

substrate, followed by either a “thick” (23–37 nm) or “thin” (13 nm) Pb(Zr0.2Ti0.8)O3 layer, and a cap

of ∼10–19 nm LSMO, as shown in Figure 5.4. These thicknesses were chosen to explore the changes in

strain profiles associated with gradual relaxation of PZT to the bulk.

5.4 X-Ray Diffraction

Layer geometries were confirmed using XRR, as shown in Figure 5.1. With the layer thicknesses mea-

sured via TEM as a starting point, the chemical profiles were iteratively refined in the GenX software

package.184 A list of samples is given in Table 5.1.

Figure 5.1: X-ray reflectivities (circles) and calculated fits (solid lines) measured with Cu Kα radi-
ation at 298 K.
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Table 5.1: Sample thicknesses measured by TEM.

PZT Polarization & Thickness Top LSMO Thickness (nm) PZT Thickness (nm) Underlayer Thickness (nm)

Up Thin
Up Thick
Down Thin
Down Thick

13 13 13 LSMO
19 37 12 LSMO
13 13 8 SRO
10 23 13 SRO

To confirm film quality and epitaxy, reciprocal space maps were conducted on each sample around

the STO 103 diffraction condition, as well as in a symmetric θ − 2θ condition (Figures 5.2 and 5.3, re-

spectively). The results show that the LSMO 103 diffraction condition is quite broad in-plane, suggesting

it is not uniformly strained. There is evidence for some STO substrate mosaic in the poled-down thin PZT

sample, but otherwise the samples are all single-crystalline and epitaxial. The strains relative to bulk

LSMO measured by this technique are listed in Table 5.2. The poled-up PZT samples exhibit significantly

larger in-plane strains (ϵx x) than the poled-down PZT samples—it should be noted that these samples

consist of two LSMO layers, so this result is the average of strains across both layers.

Figure 5.2: X-ray reciprocal space maps measured around the STO 103 diffraction condition using
Cu Kα radiation at 298 K. The LSMO 103 peak is visible in the upper-middle portion of each panel.
A diagonal analyzer streak is also visible in each of the maps.

Table 5.2: Average LSMO strains measured by XRD relative to bulk LSMO (3.87 Å).

PZT Polarization & Thickness ϵx x (%) ϵy y (%) LSMO c/a Axial Ratio

Up Thin
Up Thick
Down Thin
Down Thick

0.791 0.0186 0.992
1.25 -0.33 0.984

0.450 -0.430 0.991
0.626 0.00952 0.994
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Figure 5.3: Symmetric θ − 2θ scans of the (001) and (002) diffraction peaks measured using Cu
Kα radiation at 298 K. The insets show detail around the (002) reflections and Kiessig fringes are
visible around the PZT (002) peak.

5.5 Scanning Transmission Electron Microscopy

Aberration-corrected STEM was conducted to confirm the quality of the LSMO / PZT interfaces. STEM-

HAADF images show that the layer thicknesses are nominally constant in the plane of the film (Figure

5.4). The reversal of the PZT polarization between the LSMO and SRO underlayers is also confirmed lo-

cally by measuring the Ti4+ cation displacement at several points along the interface (Figure 5.4.C,G).305

Since all the film layers were grown in situ, it was not possible to conduct piezoresponse force microscopy

(PFM) measurements without disturbing the pristine interfaces between each layer. XRD shows that in-

plane, the films are constrained to the substrate. However, as we later discuss, the local strain state of

the top LSMO layer varies greatly depending on the choice of underlayer and PZT thickness.

5.6 Local Ferroelectric Polarization Measurements

To determine the local PZT polarization with better than 8 pm precision, STEM-HAADF images were

cross-correlated with the StackReg plugin for the ImageJ analysis program.306,307 The program takes an

input of serially acquired images, performs a cross-correlation routine to align them, and then averages

across Z through the stack. It was found that the default rigid-body rotation alignment option worked

best since it does not rescale or otherwise distort the images. Likewise, the default Z integration by the

average value of each image also yielded the best results, some of which are shown in Figure 5.5.
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Figure 5.4: (A, E) Illustration of the two film structures used in this study, with the PZT polarization
direction indicated by the arrows. Characteristic high-angle annular dark field (STEM-HAADF)
images of the top (B, F) and bottom (D, H) PZT interfaces, showing the absence of any extrinsic
defects. (C, G) Cross-correlated images of the PZT layer, confirming the change in polarization; the
insets are the result of multi-slice simulations, with the horizontal dash corresponding to the center
of the unit cell.

Figure 5.5: Illustration of the cross-correlation and deconvolution routine. (A) A series of acquisi-
tions and (B) The reconstruction of 50 such images acquired over 5 µs intervals.
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Figure 5.6: Multi-slice calculations conducted for a 16 nm thick PZT layer assuming differing cation
displacements from their centrosymmetric positions. The dashed line is added as guide to the eye
to show the difference in displacements.

Multi-slice STEM image simulations were then conducted using the QSTEM program.194 The ex-

pected lattice parameters for the Pb(Zr0.2Ti0.8)O3 composition of PZT are aPZ T ≈ 3.935 Åand cPZ T ≈
4.132 Å.308 From the cation displacements measured by Jia et al., it is possible to estimate the expected

relationship between Ti (δTi) and O (δO) atom displacements as δO ≈ 2.96×δTi .
304 Several structures

were constructed and compared to the measured data; these structures are shown in Figure 5.6. The

third and fourth figures from the left best fit the experimental STEM-HAADF images.

5.7 Bulk Magnetometry

Macroscopic magnetic hysteresis measurements (Figures 5.7.A,B) reveal a thickness-dependent satura-

tion magnetization (MS). The data shown have been normalized to the entire thickness of LSMO present

in each sample. A remarkable 50% (∼0.6 µB Mn−1) difference in MS occurs between poled-up and -

down heterostructures based on thick PZT (Figure 5.7.A). A smaller 10 − 20% (0.1 − 0.2 µB Mn−1)

difference in MS occurs between poled-up and -down heterostructures based on thin PZT (Figure 5.7.B).

For comparison, MS ≈ 1 µB Mn−1 is expected for La0.67Sr0.3MnO3 at room-temperature.146 These differ-

ences are also reflected in the Curie temperature (TC) (Figure 2.C): the samples deposited on the thin

PZT have a TC of 335− 342 K, while the samples on thick PZT show TC of 328− 331 K, compared to

a nominal bulk TC of ∼360 K.309 Additional magnetometry, including details of alignment effects and

more precise measurements of Curie temperature, are given in Appendix C.1.
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Figure 5.7: Top: (A, B) In-plane vibrating sample magnetometry (VSM) measurements conducted
at 305 K along the [100] substrate direction, showing a ∼50% increase in saturation between the
poled-up and poled-down thick PZT samples (A) and a 10–20% increase in saturation for the thin
PZT samples (B). (C) Moment versus temperature measurements conducted in a 100 Oe magnetic
field measured on heating show a significant enhancement of TC with decreasing PZT thickness.
Bottom: (D-G) Polarized neutron reflectometry (PNR) magnetization depth profiles measured at
298 K and with an in-plane magnetic field of 1 T along the [100] substrate direction. The insets
show the measured spin asymmetry R++−R−−

R+++R−− and the fits to the data. The vertical dashed lines mark
the boundaries between adjacent film layers. The black lines are a model that assumes uniform
magnetization throughout each LSMO layer, while the blue lines are a model that allows for graded
magnetization through the LSMO. The arrows in the inset show regions of improved fitting. There
is a clear suppression of magnetization across the majority of the top LSMO layer in (D), as well as
suppression near the vacuum and PZT interfaces in the other samples (E-G).
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5.8 Polarized Neutron Reflectometry

To probe the local origin of these magnetization differences, PNR was conducted at 298 K with an in-

plane magnetic field of 1 T. Magnetization depth profiles (Figures 5.7.D–G) show that the MS of the

top LSMO layer varies spatially but is generally suppressed near the vacuum surface as well as at the

PZT interface, as has been previously observed.310 Strain-induced distortions of LSMO can suppress

TC and consequently room-temperature magnetization.50,169,170,311 The suppression of TC due to strain-

induced distortions in LSMO results from changes in the Mn–O–Mn bond angles that govern electron

hopping between the Mn eg states responsible for double-exchange.162,312,313 Because of the sensitivity

of the double-exchange mechanism to strain, local strain fluctuations—if present—may give rise to the

graded magnetization profiles observed in PNR. Further details of the PNR fitting and results are given

in Appendix C.2.

5.9 Geometric Phase Analysis

GPA was used to test this strain hypothesis by measuring strains directly from TEM micrographs with

∼0.1% accuracy down to the nanometer scale.199,200 In all samples the in-plane strain is essentially

uniform over the 3–5 nm integration window, varying by < 0.1%. We note that there is good agree-

ment between the average GPA-measured c/a axial ratios and those measured by XRD (Table 5.2). The

out-of-plane strain relative to bulk unstrained LSMO increases normal to the PZT interface, reaching a

maximum at the vacuum surface. Using this technique we are able to map the local c/a axial ratio within

each sample (Figure 5.8.B). This analysis reveals that for both thick PZT samples (Figure 5.8.C,D) the

c/a of the LSMO increases from ∼0.96 at the PZT interface to 1.01− 1.03 at the vacuum surface. This

corresponds to a strain gradient of approximately 2.95 − 4.76 × 106 m−1. The poled-down thin PZT

sample (Figure 5.8.F) shows a similar trend, increasing from ∼0.98 at the PZT interface to ∼1.03 at the

vacuum surface (a gradient of 4.76× 106 m−1). However, the poled-up thin PZT sample (Figure 5.8.E)

shows a U-shaped profile that drops from ∼1.04 at the PZT interface to ∼0.97 at the middle of the

LSMO and increases to ∼1.05 at the vacuum surface. The changes coincide with significantly different

c/a ratios in the adjacent PZT layer, which ranges from 1.04− 1.1, suggesting that the interfacial strain
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Figure 5.8: (A) Characteristic STEM-HAADF micrograph of the LSMO / PZT interface; the inset
shows the fast Fourier transform of the PZT layer. (B) Characteristic map of local c/a axial ratios
in the LSMO and PZT layers. This ratio varies throughout the LSMO but is largest at the vacuum
interface. (C-F) Line scans of c/a normal to the LSMO / PZT interface for all four films. The vertical
line indicates the PZT boundary, while the horizontal dashed region indicates the c/a range outside
of which magnetization is expected to be suppressed.

state is heavily dependent on the tetragonality of the underlying PZT layer, as well as the thickness of the

LSMO layer. More importantly, a comparison of the PNR and GPA data shows that in general, a LSMO

c/a that deviates outside of the range of 0.98−0.995 coincides with local suppression of magnetization,

which agrees well with changes in bulk properties.314 The observed strain fluctuations may correlate to

local spin changes, particularly since they are comparable in magnitude to the strains needed to induce a

measurable flexoelectric effect in other systems.315,316 While direct flexomagnetism is limited to a subset

of symmetry classes, indirect flexomagnetism is expected to be present in all magnetoelectrics, wherever

polarization and magnetization are coupled.317

5.10 Strain Effects on Magnetization

To estimate the strain-induced suppression of magnetization in the samples, we turn to the empirical

model of Millis et al.162 and DFT calculations, in which we isolate various contributions to the observed

magnetization behavior.
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5.10.1 Millis Model

Millis et al. proposed a model that relates TC to the substrate strain-induced enhancement of the Jahn-

Teller distortion relative to unstrained bulk LSMO.162,318 We choose this model since it allows us to

directly substitute the averaged local 〈c/a〉, extracted from the experimental GPA, to obtain an esti-

mate of TC . We then conducted DFT calculations to explore the electron-lattice effects mediating the

microscopic coupling in detail.

For the poled-up PZT samples we find from GPA that 〈c/a〉LSMO ≈ 0.99 − 1.01 and we estimate

TC ≈ 249−295 K for the top LSMO layer using the Millis et al. model. These out-of-plane strains appear

to greatly suppress the FM ordering of the top layer, as is observed in PNR (Figure 5.7.D,F). In contrast,

for the poled-down samples, we find that 〈c/a〉LSMO ≈ 0.98− 0.995 and we estimate TC ≈ 319− 327

K. These distortions result in a higher TC and larger average magnetization across the LSMO (Figure

5.7.E,G). The predicted and measured Curie temperatures for the poled-down samples are in excellent

agreement (Figure 5.7.C); however, the agreement for the poled-up samples is poorer, perhaps because

these samples include two LSMO layers and the measurement of TC is less accurate.

Using the Millis et al. model, TC for the films was estimated using the average lattice parameters

from XRD, as shown in Table 5.3. The values agree relatively well between the calculated and measured

TC for the poled-down PZT samples. However, the calculated TC deviates significantly for the poled-up

films. This discrepancy can be explained by different strain states for the LSMO layers above and below

the poled-up PZT interlayer. XRD is insensitive to these small changes because of the superposition of

relatively broad LSMO 103 diffraction peaks.

Moreover, it is not possible to rule out chemical changes that would affect the TC (ϵ = 0) parameter

Table 5.3: Curie temperatures measured and estimated from the Millis et al. model using XRD.

PZT Polarization & Thickness Measured TC (K) Calculated TC (K) Upper Bound (K) Lower Bound (K)

Up Thin
Up Thick
Down Thin
Down Thick

335 300 305 284
331 274 278 259
342 341 345 322
328 313 318 296
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in the model. We can estimate the effect of a 5% doping variation using the bulk phase diagram (see

bounds in Table 5.3).309 The agreement with the magnetic data is still excellent for the poled-down PZT

samples deposited on SRO, but—even allowing doping fluctuations—the model based on XRD cannot

account for the Curie temperature of the poled-up PZT samples deposited on LSMO. This suggests that

the LSMO layers are in different local strain states, since EELS shows that the nominal chemistry is the

same in all samples, and emphasizes the importance of local strain measurements to deconvolute these

strains.

5.10.2 Density Functional Theory

We next perform spin-polarized DFT calculations within the generalized-gradient approximation plus

Hubbard-U method on a series of LSMO structures to isolate the contributions of epitaxial strain from

interfacial charge-transfer on TC and Mn eg orbital polarization. We choose lattice constants consistent

with the experimental epitaxial constraints and 〈c/a〉LSMO ratios ranging from 0.985 (poled-up thick

PZT) to 0.994 (poled-down thick PZT). We note that these axial ratios refer to the metric shape of the

simulation cell, not local octahedral elongations, and thus deviations from the local strain measurements

determined using GPA are expected. The atomic positions are then fully relaxed, allowing for rotations

and bond elongations. First we computed the optimal 〈c/a〉 for LSMO on (001)-oriented STO and

obtained a value of 0.985, which is consistent with the average 〈c/a〉 of LSMO on poled-up thick PZT.

We then applied 0.5% and 1% uniaxial strain along the [001]-direction to simulate the range of observed

axial ratios (Figure 5.9), as a means to disentangle the strain contributions from interface effects due to

coherent strain of LSMO with varying PZT thickness and polarization. We then calculated a mean-field

theoretical ferromagnetic Curie temperature, T M F T
C , following the procedure in references 319 and 320.

Our DFT results indicate that out-of-plane stretching monotonically increases T M F T
C from 292 K (0%)

to 323 K (1%) at the highest 〈c/a〉 state. Our T M F T
C trend compares favorably with our measured poled-

up PZT samples that have LSMO underlayers as well as the model calculations following Millis et al. To

quantify the orbital occupancy, we calculated the electron orbital polarization, P =
nx2−y2−nz2

nx2−y2+nz2
, of Mn eg

orbitals from the partial density of states (PDOS) spectra, where nx2−y2 and nz2 are the area under the

curve for dx2−y2 and dz2 orbitals, respectively, integrated up to the Fermi level.321 A positive value for
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Figure 5.9: (A) Relationship between T M F T
C (K) and P (in %) for various simulation cells as calculated from

DFT. Positive value for P indicates the percentage excess of Mn eg electrons filling dx2−y2 orbital relative to
the dz2 orbital and vice versa. The 30-atom supercell contains two distinct Mn atoms, Mn (I) (open, red)
and Mn (II) (filled, blue). (B) Relationship between T M F T

C (K) and axial ratio (c/a) as calculated from DFT.
A clear trend emerges between c/a, P, and T M F T

C . In unstrained LSMO, both dx2−y2 and dz2 are filled. The
application of in-plane tensile strain promotes preferential dx2−y2 filling in both Mn atoms; simultaneously
T M F T

C decreases. However, out-of-plane stretching gradually promotes transfer of charge to dz2 orbitals and a
corresponding gradual increase in T M F T

C is found. Circles correspond to bulk LSMO and triangles are epitaxially
strained LSMO (under uniaxial strain varying from 0–1% along the [001] direction).

P indicates that electrons favor dx2−y2 orbital occupancy and a negative P value indicates that electrons

favor dz2 occupancy. We find that in bulk unstrained LSMO, P takes both negative and positive values,

and the magnitude of P is roughly the same for both Mn sites (Figure 5.9 and Figure 5.5); T M F T
C for bulk

LSMO is estimated to be 388 K. Application of an in-plane tensile strain alone promotes preferential

dx2−y2 orbital filling; P takes only positive values at both Mn sites and T M F T
C reduces drastically to

292 K, which agrees well with our experimental measurements made on poled-up samples. Uniaxial

strain along [001] gradually transfers charge to the Mn dz2 orbital aligned along the z-direction, as

expected.168,169,322 At 1% elongation, P becomes both negative and positive (T M F T
C ≈ 322 K), albeit

reduced relative to unstrained LSMO. Commensurate with the filling of dz2 orbitals as a function of out-

of-plane stretching, T M F T
C is also found to increase, indicating a direct association between the c/a axial

ratio, macroscopic T M F T
C and P in LSMO.

Although a clear trend emerges between c/a, TC and P, in agreement with previous literature,323,324

we recognize that our DFT calculations do not fully capture the TC behavior of the poled-up samples.
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While these samples have the largest average 〈c/a〉 value (as measured by XRD), their measured TC is

lower than that of other samples, indicating the existence of an additional competing mechanism not

captured in our simulations. We also note that these calculations are done assuming a uniform uniaxial

strain, in contrast to the changing strain observed in GPA; nonetheless, we believe that these results

provide a valuable insight into how increasing tetragonality affects electronic and magnetic ordering.

5.11 Electron Energy Loss Spectroscopy

To probe other possible coupling mechanisms, such as chemistry changes or charge-transfer screening,

we have conducted EELS mapping of the LSMO / PZT interface. The Mn L2,3 white lines near 640-665

eV are measured in this study since they contain information about excitations from the spin-orbit split

2p3/2 and 2p1/2 levels to available states in the 3d band.19,197,325–328 Screening of surface charge from

the adjacent PZT layer gives rise to a change in the local 3d band occupancy, reflected in a deviation

from the nominal Mn3+ / Mn4+ ratio of ∼3.3.329,330

Figure 5.10 shows the results of STEM-EELS maps at the LSMO / PZT interface for the thick samples.

We find that the interfaces are quite sharp, with the EELS signal limited to one to two atomic planes away

from the interface; however, because STEM is a localized technique it is impossible to completely rule

out some intermixing in either interface. Both samples possess a bulk valence of ∼3.4 (near the nominal

3.3), but at the interface the value for the poled-up sample drops to ∼2.63 while that of the poled-down

sample increases to ∼4.26. Additionally, there is a clear shift of the Mn L3 edge toward lower energy

in the poled-up sample (Figure 5.10.B), indicating lower valence; however, the shift in the poled-down

sample is not as pronounced.327,329 The valence change is spread over 3–4 u.c. at the interface, with

an average valence at ∼3.02 for poled-down and ∼3.89 for poled-up—a difference of ∼0.87. It should

be noted that the error bars on this data are still rather large, ruling out more detailed analysis of the

induced valence, but there is clearly an interfacial change likely resulting from interaction with the

adjacent ferroelectric layer.

Thus, while local strain fluctuations suppress magnetization across larger length scales, it appears

that charge-transfer screening operates in a ∼2 nm interface region at the PZT boundary (Figure 5.7.D-

G), in line with prior estimates.133,135,175 PNR measurements show that the change between states in the
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Figure 5.10: STEM-HAADF images and EELS maps of the top LSMO / PZT interface in the poled-up
(A) and poled-down (D) thick PZT samples. The numbers indicate the atomic rows across which
average spectra were collected and correspond to the Mn L2,3 spectra in (B, E). (C, F) Calculated
Mn L3 / L2 ratios and estimated Mn valences from each row. Error bars correspond to the standard
error of the Gaussian fits to the edges. Although both samples possess the same valence in the
bulk (∼3.4), they diverge near the PZT interface, indicating screening of surface charge from the
adjacent PZT layer.

thick samples at 298 K is ∆m= mdown−mup = 0.88−0.22= 0.66 µB Mn−1, while, for the thin samples,

∆m = 0.54− 0.34 = 0.20 µB Mn−1. These values agree well with previous magneto-optical studies of

ultrathin LSMO that found ∆m= 0.76 µB Mn−1.138

5.12 Conclusions

Several trends are now clear. We find that it is possible to self-pole PZT through the use of an appro-

priate substrate material, a method which may be extended to many other systems. Macroscopic bulk

magnetization measurements show that MS and TC depend on both PZT polarization and thickness.

PNR measurements reveal that MS varies locally and is most suppressed at the LSMO / vacuum inter-

face, where the GPA-measured LSMO c/a axial ratio is largest. Furthermore, we find evidence for large

strain gradients (∼106 m−1) in the LSMO. Phenomenological models show that local strains affect the
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Mn eg electronic distribution and play a role in suppressing the LSMO TC . EELS and PNR also reveal the

presence of a ∼2 nm charge-transfer screening region that affects magnetization at the PZT interface.

However, the magnitude of the induced magnetization does not directly agree with the previous work of

Vaz et al., suggesting that other factors may be at work.138

Collectively the results obtained in this study suggest a more complex model of strain- and charge-

mediated magnetization in FE / FM composites. We find that the tetragonality of the PZT has a pro-

nounced effect on the interfacial strain in the LSMO: a larger PZT c/a corresponds to a larger interfacial

c/a in the LSMO, which gradually increases near the vacuum surface. In the ultrathin limit (< 4 nm),

strain fluctuations in LSMO are minimal and charge-transfer screening drives coupling. As the LSMO

thickness increases, local strain fluctuations soon overwhelm the magnetization of the layer, indicating

that layer geometries are crucial components in the design of these materials. In excess of the ultrathin

limit, our PNR results indicate that local strain can induce much larger changes in the magnetization

profile of LSMO than charge-transfer screening. By tuning the PZT tetragonality through doping or an

appropriate substrate, it is possible to reshape magnetization gradients in the FM. Our results suggest

that a piezoelectric substrate may be used to actively control local strain and directly vary the spin state

of the FM. Moreover, it is possible that such strain may actually act to rotate the magnetization of the

LSMO layer. The wealth of insight provided by this suite of techniques shows that local probes of mag-

netization, strain, and chemistry are an invaluable way to understand coupling of multiple degrees of

freedom in MEs and emerging flexomagnets.
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Chapter 6: Screening-Induced Magnetic Phase Gradients at LSMO / PZT
Interfaces

6.1 Introduction

In this section we continue our study of LSMO / PZT / LSMO trilayers and explore the relationship

between FE polarization and charge screening in the manganites. We measure the local FE polarizations

at the PZT interface that result in asymmetric charge-transfer screening lengths. We suggest that this

charge screening is responsible for a local phase transition at the manganite interface.

Magnetoelectric LSMO / PZT thin-film heterostructures offer a window into the rich and varied

interactions of structure, chemistry, and magnetic order at oxide interfaces. However, the current picture

of coupling in this system is clouded by a insufficient understanding of local ferroelectric polarization

and its effect on the formation of interfacial magnetic and electronic phases. Here we present direct,

local measurements of electron energy loss, ferroelectric polarization, and magnetization, which we use

to map the phases present at the LSMO / PZT interface. We combine these experimental results with

density functional theory calculations to elucidate the microscopic interactions governing the interfacial

response in this system. We draw two main conclusions from our experiments: namely, that there exists

a magnetic phase transition at the LSMO / PZT interface that depends on local PZT polarization direction

and magnitude; and that a metal-insulator transition at the interface gives rise to significantly different

charge-transfer screening lengths. Collectively these results help establish a framework by which to

understand the fundamental asymmetries of magnetoelectric coupling in oxide heterostructures.

6.2 Background

Doped La1−x“A”xMnO3 manganese perovskite oxides have received considerable attention for spintronic

applications, since they offer many handles for structural control of magnetism and possess a relatively

high ferromagnetic Curie temperature (TC ≈ 360 K).35,309,331 In these compounds “A” is an alkaline

earth such as Ba2+, Sr2+, or Ca2+; for alloying in the range of 0 < x < 1, the charge state of Mn ions

is between the nominal values, 3+ and 4+.35 The electronic configuration for such a 3d Mn3+δ cation
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in an octahedral crystal-field can be written as t3
2g and eδg , where the magnitude of δ depends on the

concentration of x and the degree of hybridization with the neighboring O 2p states in the MnO6 octa-

hedra. In the present work, we focus specifically on the La1−xSrxMnO3 (LSMO) system at compositions

near x ≈ 0.3, where double-exchange interactions dominate, eδg electrons become delocalized, and a

completely spin-polarized FM ground-state is stabilized.35

One of the intriguing aspects of t3
2g and eδg configuration is the δ-electrons in the eg electronic states.

Practically one may achieve control of eδg electrons by interfacing LSMO with a functional substrate,

such as a ferroelectric material like PZT, BTO, and BFO, through controlled growth in a thin-film het-

erostructure.7,70,332 In this class of artificial magnetoelectrics, it has been shown that the magnetic order

is coupled to the ferroelectric order at the interface, thereby permitting reversible electric-field tuning

of TC and transport properties.7,57 The use of a ferroelectric substrate provides several mechanisms to

control magnetization, including the screening of bound surface charge from the ferroelectric by metallic

carriers in the ferromagnet.145,332,333 Poling of the ferroelectric toward or away from the ferromagnet

changes the effective charge state at the interface, resulting in a reversible change in local Mn ion valence

and spin state.143,163 This charge-transfer screening phenomenon, already widely employed in semicon-

ductor p-n junctions, typically operates over a few u.c. and greatly depends on interface structure and

chemistry.133,333,334

There are many unresolved questions about the nature of this coupling mechanism in the LSMO /

PZT system. Pioneering X-ray absorption spectroscopy and magnetooptical studies by Vaz et al. found

evidence for charge-transfer screening that is estimated to occur over 1–2 u.c. at the interface and

depends on the PZT polarization direction.138,140,143,163 However, this effect alone was insufficient to

explain the measured interface magnetization, so the authors suggested that an associated spin structure

change may also occur. We have recently shown that charge-transfer screening acts in concert with

local strain fluctuations to mediate coupling, and that the dominant coupling mechanism appears to

depend on film geometry.335 Moreover, it is known that a suppression of ferroelectric polarization may

occur at interfaces, but it is unclear how this may play a role in the LSMO / PZT system.304 Recently,

Lu et al. have proposed a theoretical mechanism whereby charge-transfer screening electrostatically
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dopes an interface region of the LSMO into a paramagnetic insulating state, which might explain the

larger screening lengths we and others have measured.146,335,336 More insight is clearly needed into local

ferroelectric polarization and the presence of such a “doping-induced double layer,” which would have

fundamental implications for oxide-based electronics.

Aberration-corrected STEM is an ideal technique to study local ferroelectric polarization, valence,

and interfacial phases at spatial regimes inaccessible by traditional surface probes. Here we directly

probe chemistry and valence across the LSMO / PZT / LSMO heterostructure, which we then relate

to local magnetization, ferroelectric polarization and DFT. Using EELS we explore changes in the O K

edge fine structure, which captures the evolution in Mn valence across the heterointerface. We find that

the local ferroelectric polarization is different at each interface and that this leads to gradients in the

associated magnetic and electronic interfacial phases.

6.3 Sample Growth

We have used a substrate-induced self-poling technique to spontaneously pole the PZT layer during

growth, as described in Section 5.3.335 We first deposited a ∼12 nm La0.7Sr0.3MnO3 layer onto a bulk

STO (001) substrate using PLD. This method sets the appropriate electrostatic boundary conditions to

spontaneously self-pole the PZT “up” or away from the STO substrate.300–304,335 We then deposited a

∼37 nm thick PbZr0.2Ti0.8O3 layer and a second ∼19 nm thick LSMO layer. Assuming a uniform, nearly

monodomain configuration, this single sample will possess two different LSMO interface charge states:

the top layer will be in a hole charge depletion state and the bottom layer will be in an accumulation

state.138

6.4 Electron Energy Loss Spectroscopy – O K Edge

EELS line scans were collected from several parts of the film to study the spatial evolution of local Mn

valence normal to the PZT interface. We employ an enhanced linescan method, termed a “SMART”

linescan; this approach averages a larger area of the interface, reducing the risk of beam damage to

the film and increasing the signal-to noise ratio of the scan, thus ensuring an accurate interpretation of

the EELS fine structure.337 Figure 6.1.A shows an aberration-corrected STEM-high-angle annular dark
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Figure 6.1: Structural and chemical mapping of the heterostructure. (A) Cross-sectional STEM-
HAADF micrograph of the film structure, with the direction of ferroelectric polarization and SMART
linescan region indicated. (B) Power-law subtracted EEL spectra corresponding to the O K edge,
collected every lattice plane beginning at the LSMO / PZT interface. (a) and (b) correspond to the
pre- and main-peak features, respectively. (C) Power-law subtracted EEL spectra corresponding to
the Mn L2,3 edge. The direction of the bulk LSMO is indicated by the arrow for both scans. We note
that only the first ∼10 nm of the top LSMO layer remain after sample thinning.

field (STEM-HAADF) image of the overall heterostructure, in which all the layers are clearly resolved.

Spectra for the O K and Mn L2,3 edges were measured as a function of position normal to the interface

and are shown in Figures 6.1.B,C (the La M4,5 and Ti L2,3 edges, also resolved, are not shown here).

These scans allow us to measure fine structure changes in both the vicinity of the PZT and the bulk of

the LSMO layers.

The O K edge is highly sensitive to the local bonding environment and can be used as an indicator

of Mn valence changes.197,327,338 This edge, in the dipole approximation, selectively probes the density

of unoccupied states of O atoms with 2p character arising from the first-order transition of electrons

from O 1s to 2p states. The configuration interaction, via hybridization, between the unoccupied states

of O 2p and Mn 3d symmetry manifests as unique pre-peak spectral signatures, whose weight and peak

positions reflect the oxidation state or valence of the Mn cations.197,327,339,340 Here we probe the O K

edge at both the top and bottom LSMO / PZT interfaces to directly map and link the magnitude and

direction of ferroelectric polarization to Mn valence state.

The O K edge fine structure for the bottom and top interfaces is shown in Figure 6.1.B, in which

both the pre- and main-peak are clearly resolved. We observe three prominent features (labeled a-c),

which correspond to excitations associated with hybridized states of O 2p states with Mn 3d, La 5d / Sr

CHAPTER 6: SCREENING-INDUCED MAGNETIC PHASE GRADIENTS AT LSMO / PZT INTERFACES



92

4d and Mn 4sp bands, respectively.197 We find that the pre- to main-peak energy separation (∆EO(b−a))

changes in the vicinity of the LSMO / PZT interface, as shown in Figures 6.2.A,B. In both cases the

samples display a decrease in separation from a bulk value of ∼5.5–6 eV; this decrease is small for the

bottom LSMO (Figure 6.2.A), ∼0.5 eV over 1 nm, but is nearly double for the top LSMO (Figure 6.2.B),

∼1.0 eV over 2.5–3 nm. These energy separations (∆EO(b−a)) may be correlated to changes in the Mn

valence near the interface;197 however, because it is difficult to draw comparisons to absolute valence,

we instead focus on the overall trends in behavior (these trends are further supported by shifts in the

pre-peak intensity, shown in Figure D.1).

6.5 Density Functional Theory

To probe the structural and chemical origin of these EELS features, as well as their relationship to local

phases, we have conducted DFT+U calculations using the planewave pseudopotential method as imple-

mented in the QUANTUM ESPRESSO package;341 the O K edge X-ray absorption spectra were calculated

with the help of XSPECTRA package.342,343 We note that although EELS and XAS are not strictly speaking

equivalent, these spectroscopy techniques probe the same electronic states: comparisons of experimental

and theoretical spectra across the two techniques thus provide invaluable insight and are commonly used

to rationalize observed trends and fine structure features. The core and valence electrons were treated

with ultrasoft pseudopotentials344 and PBEsol exchange-correlation functional.345 We apply the plus

Hubbard-U correction within the Dudarev formalism,346 using Ue f f = 2 eV to treat the Mn 3d orbitals

(see Appendix 6.3). We consider three unique chemical compositions: La0.6Sr0.4MnO3, La0.7Sr0.3MnO3,

and La0.8Sr0.2MnO3, permitting us to explore the electronic structure trends for a broad range of chem-

ical doping. All compositions have a rhombohedral crystal structure (space group R3̄c) but they differ

in the magnitude of octahedral rotations.347–350 From the La1−xSrxMnO3 phase diagram,36 the ground

state for the three compositions is expected to be ferromagnetic and metallic. We also note that the

“nominal” charge state of Mn is expected to be different in the three compositions, which we confirmed

from the calculated magnetic moments (see Appendix 6.3). Our main goal is to disentangle the effect of

Mn valence, magnetic spin order, and octahedral rotations on the O K edge spectral features.

The La and Sr partial occupancies were simulated by following an approach adapted by Burton et
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Figure 6.2: Electron energy loss spectroscopy (EELS) measurements of local changes in O K edge
fine structure, overlaid with an illustration of the heterostructure. (A, B) show the O K pre- to
main-peak separation (∆EO(b−a)) in the vicinity of the PZT interface for the bottom and top LSMO
layers, respectively. The bottom layer exhibits a small (∼0.5 eV) change, while the top layer exhibits
a much larger (∼1 eV) change. The bottom layer shows this change over less than 1 nm, while the
top layer shows a much broader region of change, nearly 2.5–3 nm. (C, D) show the difference in
EELS Mn L2,3 edge peak position (black circles) and L3/L2 peak intensity ratio (green triangles) in
the vicinity of the PZT interface for the bottom and top LSMO layers, respectively. This figure is a
combination of scans from different parts of the film and the scales for both curves are the same for
panels C and D. The edges were fitted using a combination of Gaussian functions in OriginPro and
the error of each fit was calculated. The difference in bulk energy separations is likely the result of
different sample thicknesses on either side of the PZT formed during sample preparation.

al.351,352 In this approach we construct an effective pseudopotential for a “fictitious” atom, whose cutoff

radii and valence electron configuration were assumed to be that of a La atom, but whose valence charge

is modified to mimic the valence of La / Sr partial site occupancy. For example, in our simulation for

La0.7Sr0.3MnO3, the valence charge for the La / Sr atom was taken to be equal to 2.7+. Because of the
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constraints placed on the La / Sr partial occupancy, we neither relaxed the internal atomic coordinates

nor the unit cell parameters: instead, we considered the bulk experimental structures and calculated

their charge density. As a result, our DFT calculations do not directly simulate the complex LSMO / PZT

/ LSMO heterostructure. Instead, we perform systematic calculations on the three bulk structures and

uncover trends in the O K edge spectra that we may qualitatively correlate to our experimental O K edge

EEL spectra.

In Figure 6.3, we show the calculated O K edge XAS spectra. We find excellent agreement between

the experimental (Figure 6.1.B) and our calculated O K edge spectra; specifically the three features (a,

b, and c) in Figure 6.1.B are well-reproduced in our calculated spectra. For the remainder of the present

work, we will focus mainly on the pre-peak and the main peak. In Figure 6.3.A, we show the total (spin

up + spin down) XAS spectra for the ferromagnetic spin order for the three chemical compositions.

We find that as the Mn “nominal” valence increases, the spectral weight on the pre-peak feature (cor-

responding to the O 2p – Mn 3d hybridized orbitals) decreases and shifts slightly to lower energies. The

main peak (O 2p – La 5d hybridized orbitals), on the other hand, shifts to a higher energy with increas-

ing Mn “nominal” valence. We identify two key features: namely, the spectral weight of the pre-peak and

the energy difference between the pre- and main-peak, as indicators of changes in the Mn valence state

in the O K edge. We next repeated the calculations; however, this time we imposed antiferromagnetic-A

(AF-A) spin order on the Mn atoms. The results for the pre-peak spectral features are shown in Figure

6.3.B.∗ We find two critical signatures in the pre-peak that differentiate ferromagnetic from AF-A spin

orders: as a general trend, we find that AF-A spin order increases the spectral weight of the pre-peak

features and also shifts the pre-peak towards lower energies relative to their ferromagnetic counterparts.

Our DFT calculations corroborate the hypothesis that we can use the pre-peak spectral feature from O K

edge measurements to probe the local variation in the Mn valence and the magnetic configurations. This

is an important finding, because earlier works on LSMO magnetoelectric heterostructures have shown

an antiferromagnetic spin order near the interface arising from the magnitude and direction of ferroelec-

tric polarization.138,143 However, it has been challenging to experimentally probe the spin alignment of

∗The main peak spectral features show little variation between the ferromagnetic and AF-A spin orders.
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Figure 6.3: Total (spin up + spin down) O K edge spectra calculated from density functional
theory (DFT). (A) For the bulk structures of La0.6Sr0.4MnO3 (blue), La0.7Sr0.3MnO3 (green), and
La0.8Sr0.2MnO3 (orange) compositions with ferromagnetic (FM) spin order. There is a clear shift
to higher energy with increasing Mn valence, as indicated by the arrow, in agreement with our
experimental measurements (Figure 6.1). (B) Comparison of the spectral weight and energies
of the pre-peak feature (O 2p – Mn 3d hybridized orbitals) between FM (continuous line) and
AF-A (dotted line) spin configurations on the Mn atom for the three compositions. For the AF-A
compositions, the spectral weight increases and the pre-peak shifts to a lower energy, relative to the
FM compositions. (C) Pre- and main-peak spectral features for the three bulk structures (FM spin
order), where we constrain the valence charge of the La / Sr site to be nominally 2.7+ charge so
that the chemical composition of the bulk perovskite compound is fixed at La0.7Sr0.3MnO3 for the
three structures. We note that in this simulation the rotation amplitudes for the MnO6 octahedra
are varied. The effect on the EEL spectra is negligible in this case. (D) Calculated energy difference
(∆E in eV) between the pre-and the main peaks from (A) and (C) shown as circles and triangles,
respectively. (E) Calculated ∆E for different Mn octahedra rotation amplitudes from (C), showing
a negligible change.

Mn atoms near the interface. Our DFT calculations indicate that layer (depth)-resolved O K edge EELS

measurements may offer insights to capture the unique spin behavior of LSMO films.

In addition to the two spin configurations, we also probed the effect of octahedral rotations on the O

K edge spectral features. Our calculations involved taking the three bulk structures, but we constrained

the valence charge of the La / Sr site to be nominally 2.7+. This fixes the chemical composition of the

bulk perovskite compound at La0.7Sr0.3MnO3 for the three structures, but allows for different octahedral

rotation amplitudes. The resulting O K edge spectra for the ferromagnetic spin order are shown in Figure

6.3.C. We find that the octahedral rotations (within the constraints imposed in our calculations) have
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Figure 6.4: Map of local Mn doping relative to bulk La0.7Sr0.3MnO3 as a function of position normal
to the LSMO / PZT interface for the bottom (A) and top (B) LSMO layers. The boundaries of the
associated magnetic and electronic phases are overlaid and estimated from the bulk LSMO phase
diagram.36

little effect on the O K edge spectra. In Figures 6.3.D,E we quantify, from the DFT calculations, the energy

difference between the pre- and main-peak spectral features for the ferromagnetic spin configuration. It

is clear that the Mn valence has a dominating influence in determining the energy levels of the hybridized

orbitals relative to the octahedral distortions.

We now interpret our experimental EELS measurements of the O K edge fine structure to estimate

the local phases present at the LSMO / PZT interface. We first compare our measured O K pre- to

main-peak energy separation (∆EO(b−a)) to our DFT calculations and standards investigated by Varela et

al., as we have already shown in Figures 6.2.A,B.197 Far from the interface we find that the LSMO is in

a bulk-like state, with a nominal Mn valence corresponding to the expected La0.7Sr0.3MnO3 (Mn∼3.3+)

doping. We have confirmed this nominal doping using angle-resolved X-ray photoelectron spectroscopy

(XPS) (Figure D.2). We are then able to calculate the effective change in Mn doping relative to this

bulk-like state, which we plot as a function of position in Figures 6.4.A,B. Finally, by comparing this

changing doping to the bulk LSMO phase diagram at room-temperature, we are able to estimate the

local electronic and magnetic phases present in the vicinity of the PZT interface.

Our analysis shows that for the bottom LSMO layer (Figure 6.4.A), the effective Mn doping retains

its bulk value up to approximately three lattice planes from the interface, where it drops by ∼0.15

over a nanometer. In contrast, the top LSMO layer (Figure 6.4.B) shows a larger ∼0.26 drop over

a broad 2.5–3 nm region. This measurement reveals a clear spatial asymmetry about the PZT layer:
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the top layer displays a wide region of valence shift, while the bottom layer displays a more narrow

region. Furthermore, a comparison of these values to the bulk phase diagram at room-temperature

shows that the bottom LSMO is almost uniformly ferromagnetic and metallic, while the top LSMO should

be broadly paramagnetic and insulating at the interface.36 We note that previous studies have found

evidence to support the formation of an antiferromagnetic phase at low-temperature.138,143 However,

at room-temperature the transition to a paramagnetic, insulating phase has previously been invoked

to explain the anomalously large screening lengths observed in LSMO / BTO and may be responsible

for the similarly large lengths we observe here.146 Interestingly, while a decrease in valence is expected

for the top LSMO (depletion state), an increase in valence is actually expected for the bottom LSMO

(accumulation state).138 However, we find that both interfacial valences decrease near the PZT interface,

although the magnitude of the drop for the top LSMO is much larger. The valence decrease of the

bottom LSMO may arise from depolarization of the PZT interface, incomplete charge screening and/or

intermixing.302,353

6.6 Electron Energy Loss Spectroscopy – Mn L2,3 Edge

We have also studied changes in the Mn L2,3 edge, which is associated with excitations from the spin-

orbit split 2p3/2 and 2p1/2 levels to available states in the 3d band.19,197 We focus on the chemical

shift of the Mn L2,3 edge, which only depends on core-level energy and the effective charge of the

atom.195 This method directly measures atomic charge, independent of background subtraction and

sample thickness.338 Figure 6.1.C shows the Mn L2,3 edge fine structure for both the bottom and top

LSMO layers. Taking the dashed lines as a guide to the eye, there is a clear shift to lower energy in the

vicinity of the PZT interface, indicating local chemical state changes. Figures 6.2.C,D show that in both

cases the edge intensity ratio (IL3
/IL2

) remains nearly constant throughout the LSMO. However, the Mn

L2,3 edge separation (∆EMnL2,3
) displays very different behavior for the two interfaces. In both cases

the samples display a bulk value of ∼11.2–11.3 eV that deviates in the vicinity of the PZT interface; the

bottom LSMO (Figure 6.2.C) displays a slight fluctuation of ∼0.1 eV over 1 nm, while the top LSMO

(Figure 6.2.D) displays a steady increase of nearly ∼0.2–0.3 eV over a broad 2.5–3 nm region. The

spatial extent of these regions in particular agrees well with the trends observed in the O K edge energy
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separation (Figures 6.2.A,B).

6.7 Polarized Neutron Reflectometry

Our EELS and DFT results have raised the interesting possibility of spatial gradients in the magnetic and

electronic phases at the LSMO / PZT interface. Intuitively, one would expect that the transition from

ferromagnetic metallic to paramagnetic insulating phases at the top LSMO interface would significantly

reduce room-temperature magnetization. To probe this we use PNR, a scattering technique that allows

us to measure the depth-resolved magnetic structure and is used to isolate individual magnetic layers in

a thin-film heterostructure.221,222,225,335,354

Figure 6.5 shows the result of PNR measurements conducted at 298 K with a 1 T field applied along

the substrate [100] direction. These measurements were performed on the Magnetism Reflectometer

at the Spallation Neutron Source, Oak Ridge National Laboratory.355 Figure 6.5.B shows the measured

non-spin-flip reflectivity, which indicates clear spin-splitting resulting from the magnetization of the

sample. The calculated fit is overlaid on the data and the resulting scattering length density depth

profiles are shown in Figure 6.5.A. The depth profile reveals that the magnetization of the two LSMO

layers is strongly asymmetric: the top LSMO displays a greatly suppressed magnetization throughout

(MAvg
S ≈ 0.70µB Mn−1), while the bottom LSMO displays a large magnetization (MAvg

S ≈ 2.9µB Mn−1)

that is only reduced at the STO interface. We have previously shown that the broad suppression of

magnetization near the vacuum surface can result from strain fluctuations; however, at the interface the

charge-transfer screening effect largely controls the magnetization.335 Our results suggest a uniformly

ferromagnetic character for the bottom interface, in agreement with the phase map in Figure 6.4.A. In

contrast, the top LSMO layer possesses a strongly suppressed magnetization near the interface, where

strain fluctuations are expected to be minimal, as shown in Figure 6.4.B.335 This further supports the

idea of magnetic and electronic phase transitions at the interface, in agreement with our EELS and DFT

results.
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Figure 6.5: Polarized neutron reflectometry (PNR) measurements conducted at 298 K, with a 1 T
field applied along the substrate [100] direction in the plane of the film. (A) shows the resulting
nuclear scattering length densities (black) obtained from the fit to the data and the associated
estimated magnetization (orange). We note some change in nuclear scattering length density near
the surface, as well as a reduced magnetization at the STO interface. The arrow indicates the
direction of ferroelectric polarization. (B) shows the measured non-spin-flip reflectivities (shapes),
overlaid with a fit to the data (lines).

6.8 Polarization Screening Effects on Valence

The valence and magnetic changes described in the previous section are the result of a complex inter-

play of phenomena, including interfacial charge-transfer screening and possible electronic phase tran-

sitions.146,323,335 As already mentioned, the local screening of bound surface charge is expected to sig-

nificantly affect Mn ion valence, as well as the formation of interfacial phases; thus, it is important to

understand the local ferroelectric polarization at both LSMO / PZT interfaces. Conventional scanning

probe techniques, such as PFM, are confined to surfaces and are generally of limited use in studying in-

terfaces.356 However, using aberration-corrected STEM-HAADF it is possible to directly measure cation

displacements with picometer precision, allowing us to characterize local ferroelectric polarization at

each LSMO / PZT interface (see Appendix D.3).
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These results, shown in Figure 6.6, reveal different polarization behavior for each LSMO / PZT

interface. At the bottom interface (Figures 6.6.C,D), the PZT polarization PS ≈ (53± 15)µC cm−2 is

nominally constant over the interface region. However, the top LSMO interface (Figures 6.6.A,B) behav-

ior is markedly different: the average PZT polarization PS ≈ (70± 15)µC cm−2 is more than 30% larger

than the bottom; moreover, within the interface region the polarization is reduced, likely due incomplete

charge screening and/or intermixing with the LSMO. The magnitude of the top polarization agrees well

with previous displacement current measurements (PS ≈ 85µC cm−2),138 but our local measurements

show that this polarization can be quite different for each interface.

We may estimate the effective bulk alloying change induced by charge-transfer screening, assuming

that the polarization is nominally constant parallel to the interface and fully screened by free carriers

in the the LSMO across a 2–3 u.c. (∼1.2 nm) screening length. Based off of Lu et al.’s calculations, we

may estimate∆x= PS×a, where a ≈ 0.0041cm2 µC−1.146 For PS,top ≈ (70± 15)µC cm−2 then, we find

∆x ≈ 0.29± 0.06, while for PS,bot tom ≈ (53± 15)µC cm−2, we find ∆x ≈ 0.22± 0.06. This suggests

that the magnitude, as well as the direction, of the screening effect will be different for the top and

bottom interfaces. A comparison of this calculation to our EELS phase map shows a striking agreement

between the magnitude of bulk valence change (Figure 6.4.B). Our calculation further supports the

idea of a transition from ferromagnetic and metallic to paramagnetic and insulating at this interface at

room-temperature. The magnitude of the change for the bottom interface is also reduced in both our

calculation and our EELS phase map (Figure 6.4.A), but the sign of this change is not fully consistent

with the charge-transfer screening model.

There has been considerable debate as to the spatial extent of this screening, since calculations of

the Thomas-Fermi screening length vary.135,138,140,146,175,335,357 In the present study we find that the Mn

valence change for the top interface occurs over a broader region than is expected from pure charge-

transfer screening (< 1.9 nm).175,357 Lu et al. have proposed a qualitative model for LSMO / BTO

that may begin to reconcile both the discrepancies in screening length as well as the interface phase

transitions we observe.146 The authors describe PFM measurements of polarization screening, which

yield a large ∼3 nm screening length. They propose that local screening of surface charge acts to push
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Figure 6.6: Measurement of local ferroelectric polarization. (A) and (C) show STEM-HAADF
grayscale and colorized images for the top and bottom interfaces, respectively. The dashed lines
indicate the interface region and the numbers mark the position of the measured unit cells. (B)
and (D) show the long (δI L) and short (δIS) Ti4+ cation displacement directions, as well as the
calculated spontaneous polarization (PS) for the top and bottom interfaces, respectively. These
displacements are the result of averaging over three to five positions parallel to the interface.

an interface layer of La0.7Sr0.3MnO3 into the paramagnetic insulating region of the phase diagram at

room-temperature, increasing the effective hole doping, and thereby expanding the screening region.

Our EELS results (Figure 6.4) show that the measured effect on valence is more than sufficient to push

the top interface region into the paramagnetic insulating phase at room-temperature. Because charge

must be screened over this insulating region, the effective screening length is increased. In contrast, the

bottom interface is expected to be almost uniformly ferromagnetic and metallic at room-temperature,
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with an associated short screening length. This is supported by our local measurements of ferroelectric

polarization, which show that the magnitude of the bound surface charge at the top interface is adequate

to induce such a change, while an approximately 30% smaller effect is expected for the bottom interface.

This mechanism accounts for the behavior we have observed in our EELS results and supported by DFT

calculations, as well as the asymmetric magnetization behavior revealed by PNR. Using local probes

we are able to attain direct insight into these features for the first time and we are able to resolve the

associated electronic and magnetic phases with unprecedented atomic-scale resolution.

6.9 Conclusions

Our results begin to unravel the connections between charge, valence, and spin configurations in these

materials. Using EELS we are able to quantify the extent of charge-transfer screening effects and we

show that they depend on the polarization direction. We directly measure the local Mn valence and as-

sociated O K edge fine structure changes to construct a map of interfacial phases. Our DFT calculations

lend support to the presence of asymmetric magnetic phase transitions, as reflected in EELS fine struc-

ture changes, which we are able to qualitatively reproduce. Our STEM-HAADF measurements of local

ferroelectric polarization reveal that the local ferroelectric polarization at the top interface is nearly 30%

larger than the bottom interface and is large enough to induce a transition deep into a insulating, para-

magnetic phase at the LSMO interface at room-temperature. We combine these local chemical analyses

with PNR measurements, which reveal a strongly asymmetric magnetic ordering about the PZT layer,

likely originating from charge-transfer screening.

Collectively, these results suggest a magnetic phase transition at the LSMO / PZT interface, in agree-

ment with other studies.138,358,359 We find that the local ferroelectric polarization differs at each inter-

face, which affects the magnitude of the charge-transfer screening effect in each LSMO layer. Our EELS

data, supported by DFT calculations, suggest a large change in Mn valence at the top LSMO interface,

which gives rise to the suppression in magnetization that we measure in PNR. We believe that the func-

tionality of devices based on similar heterostructures will be greatly affected by intrinsic spontaneous

polarization of the chosen ferroelectric. For instance, for Pb(Zr0.55Ti0.45)O3, PS ≈ 70−85µC cm−2, while

for BTO and BFO, PS ≈ 48µC cm−2 and PS ≈ 50− 60µC cm−2, respectively.105,138,146 Any suppression
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or enhancement of ferroelectric polarization will be even more pronounced in the latter compounds. It

may be possible to tune the boundary region with polarization by further reducing the hole doping of the

system, which may be achieved by increasing Sr doping, at the cost of reducing TC from its maximum

in La0.7Sr0.3MnO3. More study into the the polarization- and composition-dependent phase diagram

is needed; the stacking sequence of the layers in the heterostructure may also play a critical role in

device performance. Regardless, it is clear that models of magnetoelectric coupling in the manganites

and related systems must begin to account for interfacial phase transitions, which may drastically alter

coupling behavior.
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Chapter 7: Conclusions and Future Work

The work presented in this thesis has utilized a novel, local approach to correlate structure and magnetic

properties in thin-film oxide materials. Previous approaches, which have laid the groundwork for the

present study, have typically employed non-local techniques, such as X-ray diffraction and spectroscopy.

These methods, while extremely valuable, are generally insensitive to the local features that might affect

magnetization. Using TEM we have shown that the local strain and chemical states of these materials

vary greatly in the vicinity of interfaces. In particular, we find that the c/a axial ratio of these com-

pounds fluctuates, which results in a changing electronic polarization throughout the heterostructure.

This results in a suppression of FM Curie temperature, in turn producing graded magnetization profiles.

We find that these strain gradients operate over large length scales (> 4 nm), whereas charge-transfer

screening effects are confined to the interface (< 4 nm). Moreover, it is possible to reshape these gradi-

ents by tuning the tetragonality of the underlying FE. We also find that there is an intrinsic asymmetry to

the polarization screening effect arising from changes in local ferroelectric polarization. Using EELS and

STEM we are able to visualize these polarization effects and their associated effects to map the magnetic

phases present at the LSMO / PZT interface. We combine these results with DFT calculations and PNR

measurements, which provide strong evidence for magnetic phase gradients at the interface for the first

time.

Collectively our results illustrate the importance of local probes of structure and magnetism to studies

of these compounds. We are able to construct a more realistic model for ME coupling in these composites,

and we suggest ways to tune coupling by varying layer geometries and local strain state. Moving forward,

we are currently exploring dynamic changes in coupling under the application of electric fields. This will

allow us to directly measure the effect of electric field changes in magnetization in situ. Furthermore,

to map the electronic and magnetic phases present in these compounds, it is necessary to do further

PNR measurements across a range of temperatures. This will allow us to fully map the interfacial phase

diagram in this system. Nonetheless, the work presented in this thesis has illuminated the fundamental
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mechanisms underlying ME coupling in this system, as well as begun to disentangle the various strain

and charge contributions to magnetization. This new insight will guide designers of the next generation

of spintronic materials, while the suite of characterization techniques assembled for this study may be

used to explore many other ME heterostructure systems.

CHAPTER 7: CONCLUSIONS AND FUTURE WORK
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Appendix A: Strain Effects on Magnetization in Ferrous Thin-Films

A.1 Introduction

In this chapter we conduct a follow-up study to our previous work on ferrous thin film heterostructures.

We explore the effects of interfacial misfit dislocations on magnetic properties and provide insight into

how to tune these properties via structure.

Magnetic thin-film heterostructures play an important role in the performance of many devices,

including magnetic tunnel junctions, multiferroic memories, and magnetoresistive random access mem-

ories.360–365 Many of the fundamental properties that make these systems so attractive are dictated by

interactions arising near interfaces, where surface termination and symmetry breaking induce exotic

behavior.366,367 Iron and iron oxides in particular offer considerable versatility for these electronic and

magnetic systems.368–370 For instance, Fe3O4 has proven to be a promising candidate for these systems

because of its high ferromagnetic Curie temperature and structural compatibility.371–376 Interface effects,

such as strain and roughness, can also significantly affect the performance of these devices.369,377–379 In-

terfacial roughness results in greater area of interfacial contact and can enhance demagnetizing effects,

while strain can introduce magnetoelastic effects.380,381

A.2 Background

Many questions remain about how interface structure affects the evolution of uniaxial anisotropy in fer-

rite composites. Abrupt changes in magnetic anisotropy are known to occur at Fe3O4 interfaces in spin

valves.382 The origin of this effect is debated, but it has been found that Fe3O4 can induce magnetic prox-

imity effects in adjacent layers.383 Furthermore, the connection between interfacial misfit dislocations

and coercivity is poorly understood. Previous studies have focused extensively on antiphase boundaries

in Fe3O4
384–386, but the presence of misfit dislocations Fe / Fe3O4 composites has only received cursory

attention.22 Such defects can act to pin magnetic domain walls and can greatly affect tunneling magne-

toresistance in MgO-based tunnel junctions.387–389 This necessitates a more predictive understanding of
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the relationship between coercivity, domain wall motion, and misfit dislocations.

Here we examine the Fe / Fe3O4 / MgO thin-film system using XRD, TEM, VSM, and MOKE magne-

tometry. We explore the structure and magnetic behavior of these composites while varying the thickness

and surface roughness of the top Fe layer. We find a significant density of misfit dislocations that depend

on Fe layer thickness, and show that this acts in concert with epitaxial strain to control coercivity of these

compounds. These observations are supported by micromagnetic simulations that accurately reproduce

the shape of the experimental data.

A.3 Sample Growth

Nominally 45 nm Fe3O4 layers were deposited at a pO2
≈ 2× 10−6 Torr onto MgO (001) substrates, at a

substrate temperature of 250 ◦C, using MBE. 20, 25, and 30 nm Fe layers were then deposited without

substrate heating.

A.4 X-Ray Diffraction

Our structural characterization indicates that the films are of nominal composition and thickness, and

free of impurity phases. XRD and XRR scans of the samples are shown in Figure A.1. We observe a

sharp MgO (002) substrate reflection at q = 2.982 Å−1 and the Fe3O4 (002) peak at q = 1.525 Å−1.

There are clear shifts in the position of the α–Fe (002) peak that indicate changes in its strain state

(Figure A.1.B). As shown in Table A.1, between 10 and 20 nm Fe there is a near doubling of out-of-plane

compression, which gradually relaxes with increasing Fe thickness. A simple calculation of the epitaxial

mismatch between Fe / MgO and Fe / Fe3O4 predicts Fe layer strains of ϵ⊥ = −4.57% and ϵ∥ = 3.77%

for the former and ϵ⊥ = −4.07% and ϵ∥ = 3.36% for the latter, considering that there is only a small

(∼ 0.3%) mismatch between Fe3O4 and MgO.22,390 These estimated strains are significantly larger than

the measured strains in Table A.1, suggesting that misfit dislocations act to relax it. This is expected,

considering that the critical thickness for strain relaxation by misfit dislocations for Fe on MgO (∼ 3.77%

mismatch) is around tc = 2−3 nm (in contrast, Fe3O4 on MgO displays a tc in excess of several hundred

nm).28,391
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Figure A.1: θ − 2θ XRD patterns measured on each film and normalized by the intensity of the
MgO (002) substrate reflection. (A) shows the full pattern, confirming the presence of the desired
phases. (B) shows more detail of the region between 4.25–4.55 Å−1, indicating a shift in the α-
Fe (002) peak. (C) shows XRR measurements and respective fits, with the inset quantifying the
increase in root mean squared (σrms) surface roughness with increasing Fe thickness. We note the
presence of spurious MgO Kβ and W Lα reflections.

Table A.1: X-ray diffraction analysis of the α–Fe (002) peak. The measured c lattice parameters are
compared to the bulk value (c = 2.87 Å) to calculate the out-of-plane strain (ϵ⊥).13 The in-plane
strain is estimated using the Fe elastic constants as ϵ∥ =− c11

2c12
ϵ⊥.207,267

Sample q(002) (Å−1) c (Å) ϵ⊥ (%) ϵ∥ (%)

20 nm Fe / Fe3O4 4.427 2.839 -1.10 0.90
25 nm Fe / Fe3O4 4.415 2.846 -0.83 0.68
30 nm Fe / Fe3O4 4.406 2.852 -0.62 0.51

A.5 Transmission Electron Microscopy

To further explore the interface dislocations and strain relaxation of these films, TEM was conducted.

Figure A.2 shows a series of bright field cross-sectional TEM micrographs, which indicate that the Fe3O4

/ MgO interface is quite sharp and dislocation free, as shown in the insets. This is expected, consid-

ering the small ∼ 0.3% epitaxial mismatch between the layers. The Fe / Fe3O4 interface, on the other

hand, displays many dislocations (Figure A.3). From these micrographs we are able to estimate the

dislocation line density in the 20 nm film at ρ ≈ 0.175 nm−1 to ρ ≈ 0.25 nm−1 in the 25 nm film,

and ρ ≈ 0.125 nm−1 in the 30 nm film. These values compare favorably to the 0.195 nm−1 previously

reported.389 These dislocations are present at the Fe / Fe3O4 interface, depend on Fe thickness, and act

to partially relax the epitaxial strain, which explains the difference between the calculated and mea-

sured lattice strains. As will be discussed, both dislocations and epitaxial strain can greatly influence the
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magnetization of these materials.

Figure A.2: (A-C) Series of cross-section TEM images of the 20 / 45 nm Fe / Fe3O4, 25 / 45 nm
Fe / Fe3O4, and 30 / 45 nm Fe / Fe3O4 samples, respectively. The insets show high-resolution TEM
images representative of the high quality and epitaxy of the Fe3O4 / MgO interface.

Figure A.3: (A-C) Cross-section TEM images of the Fe / Fe3O4 interface in the 20, 25, and 30
nm films, respectively, taken parallel to the Fe3O4 <001> zone axis. (D-F) Inverse fast Fourier
transforms of the masked g= [100] reflection, showing the presence of multiple edge dislocations.
The dislocation density increases from ρ ≈ 0.175 nm−1 to ∼ 0.255 nm−1 between 20 and 25 nm
and then decreases to ∼ 0.125 nm−1 for the 30 nm film.

In addition to the epitaxial strain effects, we note the presence of both surface oxidation and rough-

ness with increasing Fe thickness. HRTEM micrographs (Figure A.4) reveal the presence of a 2–3 nm

surface oxide, which we identify as Fe3O4, in agreement with the XRD data. TEM also shows evidence

for increasing surface roughness; to quantify this we fit our XRR data, which shows that the root mean

squared roughness increases from σrms = 13.5− 20.8 Å, as the Fe layer thickness increases from 20–30

nm (Figure A.1.C).
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Figure A.4: High-resolution TEM image of the 20 / 45 nm Fe / Fe3O4 interface taken along the
Fe3O4 <010> zone axis. The insets show fast Fourier transforms of the Fe3O4 underlayer and
surface oxide, confirming that the oxide is Fe3O4.

A.6 Structural Effects on Magnetization

We next discuss the effect of the aforementioned structural changes on magnetization. Figure A.5 shows

in-plane magnetic hysteresis measured by the VSM (Figure A.5.A) and MOKE (Figure A.5.B) techniques

at 300 K along the MgO <100> direction. Both techniques show that the coercivity of the bilayers

increases with Fe thickness, reaching a maximum near 25 nm (Figure A.5.C). We also observe the onset

of a small exchange bias with increasing Fe thickness, coinciding with the growth of the Fe3O4 surface

oxide detected by XRD and TEM.

To disentangle the contributions of the different magnetic layers, we consider the different hysteresis

behavior measured by VSM and MOKE. The former technique samples the entire composite and shows

a sheared, soft loop (Figure A.5.A). In contrast, the MOKE technique only samples the first 20–25 nm

of the film—largely the Fe layer (Figure A.5.B). This measurement reveals a squarer, hard loop, which

results from an exchange interaction between the Fe and Fe3O4 on either side of it. Formerly free spins

in the FM Fe layer are pinned by the ferrimagnetic Fe3O4, giving rise to a harder loop shape.
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Figure A.5: In-plane magnetic hysteresis loops measured by VSM (A) and MOKE (B) at 25 ◦C along
the MgO <100> direction, with the Fe layer thickness indicated. The inset of (A) shows the high
field response of the samples. There is a clear exchange bias in the 30 nm film, which is more
pronounced in the MOKE measurement. (C) shows the magnetic coercivity (HC) as a function of Fe
layer thickness measured by each technique. The coercivity increases between 20 and 25 nm, then
significantly decreases for 30 nm.

Interpreting the observed trends in coercivity is more difficult. TEM images indicate that the Fe3O4

surface oxide ranges from 2–3 nm in all the samples, so it is unlikely that this layer is responsible

for the jump in coercivity. However, the coercivity behavior does agree quite well with the increase

and subsequent decrease in misfit dislocation density. The inhomogeneous stress distribution around

the dislocations can pin domain walls, leading to a linear increase in anisotropy with lattice deforma-

tion.387,392,393 XRD also shows that there is a near halving of out-of-plane strain (ϵ⊥ =−1.1 to −0.62%)

between the 20 and 30 nm Fe samples. Dislocations and misfit strain can introduce a magnetoelastic

contribution to the in-plane uniaxial anisotropy of the Fe layer.267

We can describe the magnetoelastic contribution of epitaxial strain to in-plane uniaxial anisotropy

(K M E
u ) of this layer as,

2K M E
u

M
=−2B1

M
(ϵ⊥ − ϵ∥) (A.1)

where ϵ⊥ − ϵ∥ is the difference in out-of- and in-plane strains measured by XRD and B1 is the magne-

toelastic coefficient of Fe.267 From this relation we are able to estimate K M E
u , as shown in Figure A.6.A.

This shows that between 10 and 20 nm the in-plane anisotropy of the Fe layer nearly doubles and that

it begins to decrease between 20 and 30 nm.

Previous ferromagnetic resonance (FMR) and other studies have shown that the anisotropy of Fe and
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Figure A.6: (A) Calculated in-plane uniaxial anisotropies resulting from substrate-induced strain,
overlayed with a cubic fit to the data, and (B) micromagnetics simulations conducted along the
MgO <100> direction using these anisotropies. The shape of the loops shows good agreement with
the measured data, but the trend in coercivity is only qualitatively reproduced.

Fe3O4 thin-films can be described in terms of surface and volume anisotropy contributions.267,394–397 The

MCA consists of a cubic term (K1) and an uniaxial term (Ku), both of which scale with film thickness—

though the former is much weaker than the latter.395 Both terms consist of magnetoelastic and shape

contributions that scale with increasing layer thickness as,

K e f f
u = Kv +

2Ks

t f ilm
(A.2)

where Kv and Ks are the volumetric and interface contributions, respectively. The t−1 dependence

implies that the uniaxial anisotropy eventually converges to the volumetric term as the film thickness

increases. Put another way, this indicates that as the film’s thickness increases, it begins to relax to an

unstrained bulk anisotropy.267

This relaxation is typically achieved by the formation of interfacial misfit dislocations, which can act

to pin magnetic domain walls (as shown in Figure A.3). The addition of dislocations lying in the plane

of the domain wall adds a contribution to the interface anisotropy, which is described by,

Hd
c =

3Gλb

2Ms
(A.3)

where λ is the magnetostrictive coefficient, G is the shear modulus, b is the Burgers vector, and Ms is the
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saturation magnetization.398,399 The strain fields associated with the dislocations act as pinning centers,

imposing a “drag” on magnetic domain walls that impinge upon them.387 As the dislocation density

increases, the number of pinning sites also increases and a concomitant change in coercivity is expected,

as we observe in Figures A.3 and A.5.

Knowing this, we can conduct micromagnetics simulations to evaluate the effect of a changing uni-

axial anisotropy on the overall hysteresis of the composite. We will assume the cubic anisotropy of the

layers is constant over the present thickness range, and we will not attempt to model the exchange bias

present in the 30 nm film. The results of these simulations are shown in Figure A.6.B. The simulations

uphold the general decrease in coercivity with increasing Fe thickness, in line with a gradual relaxation

of strain and transition to bulk-like anisotropies. However, our model does not fully capture the dou-

bling of coercivity between 20 and 25 nm Fe observed in our experimental data, indicating that there are

other factors not accounted for—most likely the presence of pinning from misfit dislocations. Nonethe-

less, it is clear that the evolution of in-plane anisotropies induced by epitaxial strain is a major factor in

determining the shape of the resulting hysteresis. This indicates that the bilayer geometry may be used

to tune magnetic properties for a particular application.

Since our simulations are unable to accurately model the jump in coercivity between 20 and 25 nm,

we will now discuss other possible factors mediating this behavior, namely surface roughness and domain

wall type. XRR indicates that the roughness of each composite increases with increasing Fe thickness.

The presence of such roughness can induce an additional in-plane surface anistoropy.268,380,400 Rough-

ness introduces local strain magnetic fields around asperities and leads to a loss of the two-dimensional

character of a film. Roughness effects are particularly significant in thinner films, whose behavior begins

to approach that of an ensemble of interacting single domain particles. Our films fall well within this

limit and so may be affected by roughness.

We may also consider the transition from Bloch to Néel magnetic domain wall types with increasing

Fe thickness. Kim et al. have calculated the wall formation energies of each and found that for Fe

films there is a crossover around 25–30 nm.394 This crossover is associated with a different coercivity

dependence: in the case of Bloch walls coercivity is inversely proportional to film thickness, while for

APPENDIX A: STRAIN EFFECTS ON MAGNETIZATION IN FERROUS THIN-FILMS



139

Néel walls it is directly proportional. This explanation has been confirmed theoretically in calculations

based on the total wall energy density and has also been observed in similar ferrite and permalloy thin-

film systems.401 Our results support the idea of a change in domain wall type, which acts in concert with

the aforementioned changes in uniaxial anisotropy to modify coercivity.

A.7 Conclusions

We have investigated the microstructure and magnetic properties of a Fe / Fe3O4 thin-film system using

XRD, TEM, VSM, and MOKE. We find that there is a large increase in coercivity between 20 and 25 nm

Fe thickness, which subsequently decreases with increasing Fe layer thickness. This is associated with a

similar trend in dislocation density, as confirmed by TEM. We show that such strain acts to impose an in-

plane uniaxial anisotropy on the composite that depends on thickness. Micromagnetics simulations using

our calculated in-plane anisotropies can qualitatively reproduce the trend in our experimental loops, but

more accurate calculations of coercivity must account for the presence of pinning from dislocations and

other features, such as surface roughness and domain wall type. Our results suggest that the precise

engineering of interfacial strain and misfit dislocations through the use of different substrate materials

may be used to tune coercivity for a particular application.

A.8 Experimental Methods

Commercial 1×1 cm2 MgO (001) substrates were purchased from MTI International and cleaned using

acetone and isopropyl alcohol. Nominally 45 nm Fe3O4 layers were deposited at a pO2
≈ 2× 10−6 Torr

and a substrate temperature of 250 ◦C using MBE. 20, 25, and 30 nm Fe layers were then deposited

without substrate heating. These Fe thicknesses were chosen to coincide with measured penetration

thickness of the MOKE signal for our system.

XRD measurements were conducted to obtain structural information; scans were performed from

2θ = 20− 80◦ at room-temperature using Cu Kα (λ = 1.541 Å) radiation on a Panalytical Empyrean

diffractometer. The patterns were normalized to the intensity of the MgO (002) substrate reflection for

comparison and analyzed using the Jade software package. The α–Fe (002) peak was fitted using a

Gaussian profile in the OriginPro software. X-ray reflectivity (XRR) measurements were also conducted
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from 0.3-2.5◦ grazing angle at room-temperature to quantify surface roughness. The reflectivity data

were fitted using the GenX software package.184

Cross-section TEM samples were prepared using conventional polishing techniques. Small sections

were glued to one another using Epotek brand M-Bond epoxy and then cured for several hours at 100

◦C. These sections were polished to ∼10 µm thickness using a low-speed polishing wheel and diamond

lapping film. They were then ion milled using a Fischione 1010 Low-Angle Ion Mill operating at 0.5−1.5

keV and 10− 15◦ incidence angle. Bright field and diffraction images were taken using a JEOL 2100

LaB6 TEM operating at 200 keV. HRTEM was used to determine the quality of interfaces and surface

morphology.

We combine TEM measurements with MOKE magnetometry to correlate local microstructure to mag-

netization. The latter technique measures the rotation induced in a polarized laser upon reflection from

the surface of a magnetic film and has been used extensively to examine magnetic properties of thin-film

systems, specifically surface and sub-surface effects.402,403 These measurements were conducted using a

custom-designed MOKE magnetometer at 25 ◦C along the in-plane MgO <100> direction. Bulk in-plane

hysteresis was also measured using a Quantum Design PPMS VSM at 25 ◦C with the field applied along

the MgO <100> direction.

Micromagnetics simulations were conducted using the Object Oriented Micromagnetic Framework

(OOMMF) software package.404 The program minimizes the Landau-Lifshitz equation,

dM

d t
=−|γ̄|M×Heff − |γ̄|αMS

M× �M×Heff
�

(A.4)

where M is the magnetization, Heff is the effective field, γ̄ is the Landau-Lifshitz gyromagnetic ratio, and

α is the damping constant. In the present study we use the Runge Kutta evolver, with the default values

of γ̄ = 2.211× 105 m/A · s and α = 0.5, which allows the simulation to converge in a reasonable time.

A 500× 500 nm2 mesh, with 5× 5× 5 nm2 cell size was used, with the thickness of the mesh varied

according to the film layers.

Simulations of the Fe / Fe3O4 bilayers were conducted in which the Fe3O4 layer was fixed at 45 nm

and the Fe layer thickness was varied between 20–30 nm. The nominal bulk saturation magnetizations
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were used, with MS,Fe = 1.71 × 106 A m−1 and MS,Fe3O4
= 4.8 × 105 A m−1.13 For the Fe3O4 layer,

a cubic magnetocrystalline anisotropy constant of K1,Fe3O4
= −2.4 × 104 J m−3 and an out-of-plane

uniaxial anisotropy of Ku,Fe3O4
= 2.5 × 105 J m−3 were used. For Fe a constant cubic anisotropy of

K1,Fe = 4.8 × 104 J m−3 was used, with the in-plane uniaxial anisotropy ranging from 3.3 × 104 to

5.796×104 J m−3. These values are in line with previous experiments.13,267,395,396,405,406 A six neighbor

exchange interaction energy was used, with exchange coefficients AFe−Fe = 21 pJ m−1, AFe−Fe3O4
= 14

pJ m−1, and AFe3O4−Fe3O4
= 7 pJ m−1.386 Demagnetization was also included. A magnetic field was then

applied along the substrate [100] direction from 250 to –250 Oe in 2 Oe steps and the magnetization in

the [100] direction was calculated.
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Appendix B: Interface Effects on Magnetization in Ferrous Thin-Films

B.1 Experimental Methods

Fe / MgO samples were first synthesized by electron beam deposition and were then characterized by

a combination of structural and magnetic analyses. X-ray diffraction, electron microscopy, and spec-

troscopy were used to confirm the crystallinity and local structure of the films.

Commercial 1 × 1 cm2 square MgO (001) substrates purchased from MTI International were an-

nealed for 12 hours at 300 ◦C in a vacuum chamber at a base pressure of ∼10−7 Torr. Fe films of three

thicknesses (10, 20, and 30 nm) were then electron beam deposited at 500 ◦C at a rate of 0.2 nm s−1.

Each film was subsequently capped in a nominal 5 nm layer of Au, deposited at 30 ◦C and a rate of 0.5

nm s−1. X-ray diffraction and fluorescence measurements were performed on the samples to confirm

the orientation, crystallinity, and thicknesses of the Fe films. SEM micrographs were captured at 10 keV

accelerating voltage with an FEI Strata DB235 Dual-Beam Focused Ion Beam (FIB) system. Cross-section

TEM samples were then prepared by a “lift out” technique on the same DB235 system operating between

5–10 keV ion beam current.407 Sputter redeposition and damage were cleaned with a Fischione 1010

Low-Angle Ion Mill operating at 0.5–1.5 keV and 4–6◦ incidence angle. Images were captured on a JEOL

2100 LaB6 TEM operating at 200 keV.

EDS maps were subsequently collected in STEM mode on a JEOL 2010F S/TEM operating at 200

keV with a convergence angle of 15 mrad and a collection angle of 28 mrad. STEM-EDS can provide the

local chemical information needed to develop a qualitative understanding of diffusion and oxidation at

the interface. The same system was used to measure EEL spectra at various points across the Fe / MgO

interface. EELS enables quantification of the relative oxidation state of the Fe atoms across the interface

region.408 The curves presented in Figure 4.4 are the sum of five spectra collected at each measurement

point. The background was removed and the energy was calibrated using the known position of the Fe

L3 edge. L3/L2 edge intensity ratios were calculated by taking the second derivative of the measured

data and then integrating the positive areas under each peak. This method is independent of background
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removal and does not depend on the method used to determine the continuous L edge contribution.255

Fe valences were estimated using the values provided by Cosandey et al.255

In-plane magnetic hysteresis loops curves were measured on the as-deposited samples at 300 K along

the Fe <100> and <110> directions with a Quantum Design VSM.
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Appendix C: Substrate-Induced Polarization Effects in LSMO / PZT

C.1 Bulk Magnetometry

To study the possibility of substrate misalignment effects on bulk saturation magnetization, we con-

ducted bulk VSM hysteresis measurements along the substrate [100] and [110] directions, as shown

in Figure C.1. The difference between these directions is negligible, indicating that the changes in

macroscale saturation magnetization between polarization states are real.

Figure C.1: (A-D) Bulk vibrating sample magnetometry measurements conducted at 305 K along
the in-plane [100] and [110] directions, showing no difference in saturation or coercivity.

To confirm the accuracy of the Curie temperature measurements, an Arrott-Belov analysis was con-

ducted on the poled-up thick PZT sample. This technique is a highly accurate method to determine

Curie temperature, independent of an applied magnetic field and thermal effects.409 As shown in Figure

C.2.A, isothermal magnetic moment versus field measurements were conducted at 4 K intervals between

300 and 356 K. The sample holder background was removed and the data was plotted according to the

M1/β ∝ (H/M)1/γ relation from the Weiss-Brillouin molecular field theory.410 Figure C.2.B shows the
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result of a plot with critical exponents β = 0.5 and γ = 1.0 assumed from the Landau mean-field ap-

proximation. The experimental exponents were then fit using the Widom scaling and universal relations

as starting points, yielding β = 0.492 and γ = 1.029.411 A simple extrapolation of the fits to zero yields

a Curie temperature of 328 K. To correlate this to the measured moment versus temperature plots, a

logistic fit was applied, followed by a second derivative. The minima of these curves were located and

show that in the case of the poled-down thick PZT sample, the minimum corresponds to 313 K compared

to the 328 K from the Arrott-Belov analysis (Figure C.3). Assuming the samples are self-consistent, it is

possible to apply a shift of the difference (15 K) to the minima to estimate TC . These results are listed

in Table C.1.

Table C.1: Curie temperatures estimated from Arrott-Belov analysis, assuming the samples are
self-consistent.

PZT Polarization & Thickness Measured TC (K)

Up Thin 335
Up Thick 331
Down Thin 342
Down Thick 328

Figure C.2: Arrott-Belov temperature isotherms for the poled-up thick PZT sample. (A) Magnetic
moment versus field plots taken in 4 K increments from 300–356 K with the sample holder back-
ground removed. (B) M2 vs. H/M plots assuming critical exponents of β = 0.5 and γ = 1.0, while
(C) shows M1/β vs. (H/M)1/γ plots, with critical exponents of β = 0.492 and γ = 1.029 estimated
from the Widom and universal relations.
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Figure C.3: (A) Logistic fits to the measured moment versus temperature data and (B) the first
derivative of these fits, with the minima marked on each curve.

C.2 Polarized Neutron Reflectometry

As described in Section 5.8, we find that the magnetization of the top LSMO layer is greatly suppressed

in the vicinity of the vacuum and PZT interfaces. As shown in Figure C.4, this asymmetry is quite pro-

nounced for both poled-up samples, and is likely the result of varying strain states, as well as asymmetric

boundary conditions about the PZT.

Care was taken during the fitting of the PNR data to maintain a very similar nuclear scattering

length density between samples and fitting types, as shown in Figure C.5 and listed in Table C.2. Only

minimal variation was allowed between samples. Our models were selected based on the quality of the

spin asymmetry fit (Figure C.6), as well as on the overall fits to the non-spin-flip reflectivity (Figures

C.7,C.8). The fits were iteratively refined using inputs from XRD, TEM, and GPA. In general the graded

magnetization profile represents a better fit to the data (Figure C.7 cf. Figure C.8) and is more consistent

with our EELS, GPA, and DFT results.
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Figure C.4: (A-D) Magnetization depth profiles for uniform (black) and graded magnetization
(blue) models.

Figure C.5: (A-D) Nuclear scattering length density profiles for uniform (black) and graded mag-
netization (blue) models.

Figure C.6: (A-D) Polarized neutron reflectometry spin asymmetry (circles) and model fits, with
the arrows indicating regions of improved fit. The black model assumes a uniform magnetization,
while the blue model accounts for a graded magnetization, the only different fitting parameters
being the number of magnetic sublayers and their magnetizations.

Table C.2: Comparison of the theoretical and fitted nuclear scattering length densities (SLDs) from
Figure C.5. Values are given in units of ×10−6 Å−2.a

Layer Theoretical Poled-Up Thick Poled-Down Thick Poled-Up Thin Poled-Down Thin

LSMO 3.59 3.50 3.57 3.50 3.50
PZT 3.85 3.74 3.80 3.76 3.77
SRO 5.11 — 4.78 — 4.74
STO 3.53 3.46 3.50 3.46 3.46

aTheoretical SLDs were obtained using the NIST SLD calculator (http://www.ncnr.nist.gov/resources/
activation/), assuming nominal bulk densities.
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Figure C.7: (A-D) Measured non-spin-flip reflectivities (shapes) and calculated fits to the data (solid
lines), assuming a graded magnetization.
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Figure C.8: (A-D) Measured non-spin-flip reflectivities (shapes) and calculated fits to the data (solid
lines), assuming a uniform magnetization.
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C.3 Experimental Methods

SrRuO3 and Pb(Zr0.2Ti0.8)O3 films were grown by PLD at 635 ◦C at 100 and 200 mTorr pO2, with laser

repetition rates of 12 and 3 Hz, and laser fluences of 1.75 and 2 J cm−2, respectively. The La0.7Sr0.3MnO3

layers were grown at 650 ◦C at 200 mTorr of oxygen with a laser repetition rate of 2 Hz and a fluence

of 1.5 J cm−2. Films were then cooled to room-temperature in 760 Torr pO2.

The crystallinity of the as-grown films was measured by XRD with Cu Kα radiation (λ = 0.15418

nm) on a Panalytical Empyrean diffractometer. Reciprocal space maps were made around the STO

103 diffraction condition. Layer thickness was studied by XRR as measured on a Rigaku SmartLab

diffractometer.

Bulk magnetometry was conducted with a Quantum Design VSM at 305 K along the [100] and

[110] in-plane substrate directions, with no discernable difference in hysteresis. TC was measured in

the range of 310–350 K under an applied in-plane magnetic field of 100 Oe. An Arrott-Belov analysis

was conducted to determine TC , assuming self-consistent samples.

PNR was conducted at 298 K with an in-plane magnetic field of 1 T applied along the [100] substrate

direction. Non-spin-flip specular reflectivites were measured from q = 0.005− 0.1 Å−1. The reflectivity

data were then fit with the ReflPak software package and refined in conjunction with XRD. A fit was

conducted with uniform magnetization in the LSMO layers and a second fit was conducted in which the

magnetization was allowed to vary. The latter resulted in a better fit to the measured spin asymmetry,

particularly at higher q.

Samples were prepared for TEM by conventional mechanical polishing and ion milling. HRTEM

images were captured at 200 keV on a JEOL 2100 LaB6. BF-STEM and STEM-HAADF micrographs were

also captured on a CS-corrected FEI Titan STEM operating at 300 keV. EELS maps and HAADF images

were measured on a CS-corrected Nion UltraSTEM™100 operating at 100 keV, with a convergence angle

of 30 mrad and an effective energy resolution of 0.6–0.7 eV.412 The background was removed from

each scan using a power law fit and spectra were extracted from each map row-by-row with a ∼ 0.1×
0.8–1 nm2 window. Hartree-Slater cross-sections were subtracted from each edge and the spectra were

processed with the EELSTools package in the Digital Micrograph to extract Mn L2,3 ratios from the
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positive component of the second derivative.413

Cation displacements were determined from a series of 10–40 STEM-HAADF acquisitions, which

were captured at 5 µs intervals and cross-correlated and averaged with the ImageJ program with the

StackReg plugin. Image simulations along the PZT [100] direction were conducted with the multislice

method in the QSTEM program.194 This allows us to achieve a precision to measure the atomic displace-

ments better than ∼8 pm.306 A 69× 70× 160 supercell consisting of 80 slices was used. A 400× 400

pixel array with a 0.05 × 0.05 Å2 resolution and 20 × 20 Å2 window size was used, along with the

imaging parameters from the microscope (V = 100 kV, C3 = 0.005 mm, CC = 1 mm, convergence angle

= 30 mrad, collection angle = 86–190 mrad). Final simulations were conducted with 30 thermal diffuse

scattering (TDS) runs, a source size of 1.1 Å and an oversampling of 10.

GPA was conducted on STEM-HAADF and HRTEM images displaying minimal drift or scan error. First

maps of local reciprocal lattice vectors corresponding to out-of-plane (g1) and in-plane (g2) directions

were constructed. The ratio of these two maps (g2/g1) then gives the local c/a.414 The line profiles

shown in Figure 5.8 were measured by integrating 3–5 nm in-plane to minimize noise. It should be

noted that local contrast and thickness fluctuations can give rise to local spikes in the measured ratio, so

we only discuss broader trends in c/a.

To calculate in- (ϵx x) and out-of-plane (ϵy y) LSMO strains, references were chosen in either the STO

or PZT layers—in the latter the measured strain values have been shifted to account for the average

strain across the PZT layer. The measured strains in the top LSMO layer were converted relative to bulk

LSMO according to

ϵrelat ive =

�
ϵmeasured +

cSTO,bulk − cLSMO,bulk

cSTO,bulk

�
cSTO,bulk

cLSMO,bulk
(C.1)

where cSTO,bulk = 3.905 Åand cLSMO,bulk = 3.87 Å. TC was estimated from these GPA strains using the

empirical model of Millis et al.162

TC(ϵ) = TC(ϵ = 0)
�

1−αϵB − 1

2
∆ϵ2

J T

�
(C.2)
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where ϵB = (2ϵx x +ϵy y) and ϵJ T =
p

2/3(ϵy y −ϵx x). TC(ϵ = 0) is the bulk LSMO TC of ∼360 K while α

and ∆ are empirical constants that represent the weighting of the bulk strain and Jahn-Teller distortion

of MnO6 octahedra, respectively. Typical values are α≈ 10 and ∆≈ 270.318

DFT calculations were performed within the spin-polarized generalized gradient approximation (GGA)

plus Hubbard-U method as implemented in the Quantum-ESPRESSO package version 5.0.415 The Co-

coccioni and de Gironcoli approach416 was followed to include an effective Hubbard term of 3 eV for

unstrained LSMO and 2 eV for LSMO on STO to accurately treat the correlated Mn 3d electrons. The

core and valence electrons were treated with the ultrasoft pseudopotential417 and the PBE exchange-

correlation functional.418,419 The Brillouin-zone integrations were performed with a Marzari-Vanderbilt

smearing420 of 0.02 Ry over a 7 × 7 × 5 Monkhorst-Pack k-point mesh421 centered at Γ, and a 60 Ry

plane-wave cut-off. For density of states (DOS) calculations, a denser 14 × 14 × 12 Monkhorst-Pack k-

point mesh sampling was used. Atomic positions were allowed to converge until the Hellmann-Feynman

forces became less than 2 meV Å−1. Structure optimization was performed using the Broyden-Fletcher-

Goldfarb-Hanno (BFGS) algorithm. The Ma et al. approach was used to simulate the crystal structure of

LSMO.422 P was calculated using the formula,

P =
nx2−y2 − nz2

nx2−y2 + nz2
(C.3)

where nx2−y2 and nz2 are the area under the partial density of states spectra of dx2−y2 and dz2 or-

bitals respectively (for both spins) within the energy window from the Fermi level to -8 eV below it.

The nearest-neighbor exchange coupling constant J0 was calculated within the mean-field approxima-

tion319,320 with,

J0 =
EF − EAF M−A

1
2

�∑
SF

1 SF
2 −
∑

SAF M−A
1 SAF M−A

2

� (C.4)

where EF and EAF M−A are the total energies (eV) of spin-polarized FM ordered and spin-polarized A-type

AF ordered calculations, respectively, S1 is the calculated atomic magnetic moment of Mn(I) atom, and

S2 is the calculated atomic magnetic moment of Mn(II) atom. From J0, T̂C was estimated by the mean-
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field theory approximation T̂C =
2
3
S(S + 1) J0

kB

319,320, where S =
�

4 ∗ SF
1 ) + (2 ∗ SF

2 )
�
/6 is the weighted

average of the magnetic moments of Mn in the FM spin order configuration.
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Appendix D: Screening-Induced Magnetic Phase Gradients at LSMO / PZT
Interfaces

D.1 Electron Energy Loss Spectroscopy – O K Edge

In addition to the measurements of the O K pre- to main-peak separation (∆EO(b−a)) described in Section

6.4, we also measure the relative intensity of the O K edge pre-peak in the vicinity of the PZT interface.

This is another well-known indicator of changing valence and density of states in the manganites.197 As

shown in Figure D.1, the relative pre-peak intensity of the bottom LSMO layer fluctuates over a 1–1.5

nm region at the interface, but deviates only slightly from the bulk value of ∼0.62. In contrast, the top

LSMO layer shows a significant change over a ∼2 nm region at the interface. There is a large increase

in pre-peak intensity from a bulk value of ∼0.58 to ∼0.69 at the interface. This suggests that at the top

interface excitations to 2t↓2g states increase. This again points toward an asymmetry in the spatial extent

of screening about the PZT, as well as a changing local density of states at the interface, in agreement

with our other EELS data.423

Figure D.1: Relative intensity of the O K pre-peak as a function of position for the bottom (A)
and top (B) LSMO / PZT interfaces. There is a significant increase in the pre-peak intensity of
the top layer near the PZT interface, which is spread out over a ∼2 nm distance. This figure is a
combination of two scans from different parts of the film.

D.2 Angle-Resolved X-ray Photoelectron Spectroscopy

Because of the difficulty in quantifying bulk valence from STEM-EELS, we have conducted angle-resolved

X-ray photoelectron spectroscopy (XPS) on the sample. This technique allows us to measure valence in

the bulk as well as closer to the top LSMO / PZT interface. As shown in Figure D.2, a shift of∼0.2 eV was
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measured in the Sr 3d peak, along with a shift in the binding energy of the Mn 2p3/2 and 2p1/2 spin-orbit

doublet, indicating a transition from Mn3+ to Mn4+ oxidation state in the interface region.424–426 From

this we calculate a reduction in Mn3+ / Mn4+ ratio from ∼2.3 to ∼1.5, in excellent agreement with our

STEM-EELS results.

Figure D.2: Angle-resolved X-ray photoelectron (AR-XPS) spectra showing a shift in Mn 2p spin-
orbit doublet binding energy near the LSMO / PZT interface. We note the presence of a weak shake
up satellite near ∼647 eV, indicating a Mn2+ species arising from contamination.

D.3 Local Mapping of Ferroelectric Polarization

The local ferroelectric polarization at the LSMO / PZT interface was estimated from STEM-HAADF im-

ages following the method described by Jia et al.304 STEM-HAADF images were first processed using

the Jitterbug program.427 Image contrast was then enhanced using the ImageJ program428 and a series

of line profiles were collected normal to the interface. The positions of each atomic column were fitted

using Gaussian functions in OriginPro and the error of each fit was calculated. We find that this error is

< 1 pm for each fitted position. These fitted peak positions were then used in the following calculation.
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We first assume that the Ti and O cations are shifted in the same direction, as is the case for

PbTiO3.304,429 We are then able to estimate the ferroelectric polarization (PS) through the linear re-

lation,304

PS = κ∆Ti (D.1)

where κ is a constant with units of µC cm−2 nm−1. Following Jia et al.,304 it can be shown that,

PS = κ(δO −δTi) (D.2)

and that,

δO =
κ− 1,390

κ− 2, 275
δTi (D.3)

For bulk PbTiO3 this yields κ= 2,726 µC cm−2 nm−1 and the following relation,

PS = 2.96(κδTi) (D.4)

Using the values of δI L and δIS measured from our STEM-HAADF images, we are able to estimate the

relative displacement of the Ti4+ cations as,

δTi =
δI L −δIS

2
(D.5)

which we substitute into Equation D.4 to estimate the local polarization. These various displacements

are schematically illustrated in Figure D.3. The ferroelectric polarization measurements presented in the

main text is an average of three to five positions parallel to the LSMO / PZT interface.

D.4 Density Functional Theory

We explored three La1−xSrxMnO3 compositions, where x = 0.2, 0.3, and 0.4. When x = 0.2, 0.3,

and 0.4, the nominal valence of Mn atoms are 3.2, 3.3, and 3.4, respectively. All compositions have

APPENDIX D: SCREENING-INDUCED MAGNETIC PHASE GRADIENTS AT LSMO / PZT INTERFACES



157

Figure D.3: Illustration of the PZT unit cell and the displacements used to calculate the ferroelectric
polarization from STEM-HAADF images. δIS and δI L correspond to the short and long axes of Ti4+

cations, respectively, while ∆Ti refers to the absolute vertical displacement of the Ti4+ cations
relative to the center of the unit cell. After Jia et al.304

a rhombohedral crystal structure (space group R3̄c), but they differ in the magnitude of octahedral

rotations (see Table D.1). The exact crystal structure data were taken from the literature. The R3̄c

space group dictates that the La and Sr atoms are randomly distributed in the lattice. Therefore, the

La / Sr partial site occupancies were simulated by constructing a “fictititous” atom; in this approach,

we assume a pseudopotential cutoff radius corresponding to the La atom, but we modify its valence to

mimic the “nominal” charge corresponding to the La1−xSrx partial occupancy. In our DFT calculations,

we neither optimize the cell shape nor the internal coordinates. We note that in an octahedral crystal

field (such as MnO6 octahedra in a perovskite), the Mn3+ and Mn4+ cations have 3d4, t3
2g e1

g and 3d3, t3
2g

electronic configurations, respectively. As a result, the Mn3+ and Mn4+ cations are expected to have

atomic magnetic moments (Mnµ) of 4 and 3µB, respectively. However, hybridization between Mn 3d and

O 2p states could cause a slight reduction in the Mnµ value. In La1−xSrxMnO3 series, as the concentration

of hole-doping (x) increases, the Mnµ is expected to decrease. We tested the validity of the “fictitious”

atom approximation by comparing the Mnµ in the three compositions. In Table D.1, the crystallographic

and magnetic data for the three compositions in FM spin order are given. As expected, the Mnµ value

decreased with increasing x, suggesting that our “fictitious” atom approximation is valid.
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Table D.1: Theoretically explored LSMO compositions. The Mn atomic magnetic moments (Mnµ)
are in Bohr magnetons (µB) units. The rotation amplitude correspond to out-of-phase MnO6 rota-
tions (a−a−a− in Glazer notation) in Ångström (Å) units.

x Mnµ (µB) Rotation amplitude (Å)

0.2 3.397 0.39
0.3 3.288 0.40
0.4 3.206 0.45

D.5 Experimental Methods

PbZr0.2Ti0.8O3 films were grown by PLD at 635 ◦C at 100 and 200 mTorr pO2, with laser repetition rates

of 12 and 3 Hz, and laser fluences of 1.75 and 2 J cm−2, respectively. The La0.7Sr0.3MnO3 layers were

grown at 650 ◦C at 200 mTorr of oxygen with a laser repetition rate of 2 Hz and a fluence of 1.5 J cm−2.

Films were then cooled to room-temperature in 760 Torr pO2.

Samples were prepared for TEM by conventional mechanical polishing and ion milling. HRTEM

images were captured at 200 keV on a JEOL 2100 LaB6. EELS maps and STEM-HAADF images were

collected on a CS-corrected Nion UltraSTEM™100 operating at 100 keV, with a convergence angle of

30 mrad and an effective energy resolution of 0.4–0.7 eV (depending on the energy dispersion used: a

higher dispersion was chosen for improved precision on the energy shift measurements, specifically for

the O K and Mn L2,3 fine structure analysis, while lower dispersions allowed for detection of the largest

possible range of edges for overall chemical profiling of the films).412 The background was removed from

each scan using a power law fit. The spectra were offset to the known onset of the O K edge. To improve

the signal-to-noise ratio of the HAADF data while minimizing sample damage, a high-speed time series

was recorded (5 µs per pixel). This data set was first rigid registered to eliminate any sample or stage

drift.∗ High frequency scan-noise was then compensated using the Jitterbug software;† importantly the

scan-noise was compensated in each individual frame of the series before averaging across the series.427

The data were not smoothed or filtered in any way. Measurements of local ferroelectric polarization are

described in Appendix D.3.

∗L. Jones et al. “Smart Align – A New Tool for Robust Rigid and Non-Rigid Registration of STEM Data.” In preparation.
†Available from HREM Research (http://www.hremresearch.com).
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In our DFT calculations, we explored both FM and A-type AF spin configurations. In AF spin order, the

in-plane Mn atoms are FM aligned, whereas the out-of-plane Mn atoms are AF coupled to one another.

Semicore 3s and 3p states were included in the valence electron electron configuration for the Mn atom.‡

We used a 90 Ry plane-wave cutoff for the wavefunctions, an effective Hubbard-U value of 2 eV to treat

the correlated Mn 3d electrons, the Marzari-Vanderbilt smearing method430 with a width of 0.02 Ry, a

Monkhorst-Pack 6×6×3 k-grid431 centered at Γ for the self-consistent field (scf) calculation, a 10−8 eV

convergence threshold for the total energy in the scf calculation, and a 4× 4× 4 mesh with 64 k-points

in the irreducible Brillouin zone for the O K edge XAS calculation. We introduced a core-hole into the

O-pseudopotential of the absorbing atom, which we compensated in our scf calculation by adding a

background charge of +1e. We used a 2×1×1 supercell and a [100] X-ray polarization vector direction

to mimic our EELS experiment. Additional calculation details for the O K edge spectra include: a 0.5 eV

broadening parameter, a 10−5 eV convergence threshold for the Lanczos method, and a 900 Ry cutoff

for the kinetic energy.

PNR was conducted at 298 K with an in-plane magnetic field of 1 T applied along the [100] sub-

strate direction on the Magnetism Reflectometer at the Spallation Neutron Source, Oak Ridge National

Laboratory. Non-spin-flip specular reflectivites were measured from q = 0.005−0.1 Å−1. The reflectivity

data were then fit with the ReflPak software package432 and refined in conjunction with XRD data. A fit

was conducted with uniform magnetization in the LSMO layers and a second fit was conducted in which

the magnetization was allowed to vary. It was found that the some variation in the chemical scattering

length density near the surface was needed to fit the data most accurately.

‡For La, Mn, and O atoms we used the valence electron configuration of 5s25p66s25d1, 3s23p63d54s2, and 2s2p4, respectively.
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