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Forecasting of in situ electron energy loss spectroscopy
Nicholas R. Lewis1, Yicheng Jin1, Xiuyu Tang1, Vidit Shah1, Christina Doty2, Bethany E. Matthews 3, Sarah Akers 2 and
Steven R. Spurgeon 3,4✉

Forecasting models are a central part of many control systems, where high-consequence decisions must be made on long latency
control variables. These models are particularly relevant for emerging artificial intelligence (AI)-guided instrumentation, in which
prescriptive knowledge is needed to guide autonomous decision-making. Here we describe the implementation of a long short-
term memory model (LSTM) for forecasting in situ electron energy loss spectroscopy (EELS) data, one of the richest analytical
probes of materials and chemical systems. We describe key considerations for data collection, preprocessing, training, validation,
and benchmarking, showing how this approach can yield powerful predictive insight into order-disorder phase transitions. Finally,
we comment on how such a model may integrate with emerging AI-guided instrumentation for powerful high-speed
experimentation.
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INTRODUCTION
Reward-based decision-making is directly linked to our ability to
accurately forecast, or anticipate, changes in a system or process.
Effective forecasting is essential for many disciplines and
technologies we take for granted, ranging from meteorology1 to
the power grid2 and from stock trading3 to logistics4. The recent
rise of autonomous vehicles, including automobiles, drones, and
spacecraft, has been propelled by advanced forecasting models
deployed on high-performance computing platforms5,6. Abundant
low-cost computing and the proliferation of machine learning
(ML) have enabled many real-time forecasting approaches. When
performed correctly, forecasting can save time, reduce cost, and
guide scientific discovery by helping direct decision-making.
Consequently, much of the scientific community is interested in
the development and application of good forecasting models;
notable examples include medicine7,8, climate science9,10, and
high-energy physics11,12. However, other disciplines, such as
materials science and chemistry, have been slower to adopt
these approaches, often due to a lack of domain-specific analytics
and control frameworks.
These issues are exemplified in the field of electron micro-

scopy, which showcases both the challenges and opportunities
for forecasting. Today’s scanning transmission electron micro-
scopy (STEM) represents the “gold standard” for the observation
of materials and chemical processes at high spatial and temporal
resolution. Everything from crystal growth to battery cycling and
alloy fatigue can be observed in situ using elaborately designed
stages, aberration-corrected sub-˚Angstr¨om probes, and high-
speed detectors13–15. While advanced hardware can easily
generate large volumes of data, our ability to interpret,
anticipate, and automatically act on such data is limited16,17.
For many studies, both ex and in situ, we must make rapid
decisions on high-latency control parameters using information
from high-throughput, multimodal data streams. However, we
currently lack the necessary low-level control, descriptive models,
and forecasting (prescriptive) approaches to implement more
powerful decision-making.

Recently, significant progress has been made toward micro-
scope automation platforms that allow for centralized, data-driven
control of instrument operations18–20. Collected data is then
typically passed through two main kinds of descriptive models:
those based on neural networks fed large volumes of hand-
labeled or simulated examples21–26, or those based on few-shot
approaches utilizing sparse, canonical examples27. We have
previously demonstrated28,29 the ability to conduct efficient,
generalizable, and task-based automated classification via the
latter approach. While such models are an important develop-
ment, it is increasingly clear that we must move beyond purely
descriptive models to realize truly autonomous experimentation.
Specifically, we require forecasting models that enable us to
anticipate changes in data streams.
Currently, a wide range of experiments, such as studying

heating- or beam-induced phase transitions, tracking of particles
and reaction fronts, or operando switching of ferroic and
quantum materials, is difficult or impossible to conduct30. In situ
electron energy loss spectroscopy (EELS), in particular, is one of
the highest-resolution chemical analysis techniques in the STEM,
but it is prone to artifacts and latency. This technique measures
the inelastic energy loss experienced by an incident electron
probe upon interaction with the atoms in a material. The energy
loss results from primary electron interactions with weakly bound
outer-shell electrons, as well as inner-shell ionization. Using this
technique, it is possible to probe the local density of unoccupied
states at sub-nanometer spatial resolution, pro- viding a powerful
means to chemically fingerprint a material during phase
transformations. However, for many such studies, the experi-
mental system (encompassing both sample and instrument) is
slow to respond to changes in control parameters due to
mechanical instability (movement), thermal mass (heating), and
hysteresis (electric and magnetic field). Because of this latency,
human-in-the-loop control is often unfeasible; once the operator
has seen that something has changed, it is usually too late to
implement a manual response.
Fortunately, this prediction and control problem is quite similar

to those encountered in the other aforementioned domains. ML
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approaches are particularly well-suited to the study of higher-
dimensional, noisy, or complex datasets, where latent correlations
may not be immediately obvious to a human operator. A variety of
time-dependent ML-based prediction approaches exist, such
recurrent neural networks (RNNs), gated recurrent units (GRUs)31,
and, more recently, transformer models32,33. Among the former,
long short-term memory (LSTMs) are commonly used to
incorporate knowledge of past experiences to model Markov-
type decision processes34. LSTM models have been extensively
applied to serial data, such as text, audio, and video35, and to
materials science problems such as prediction of switching in
ferroelectrics36. Another common time-series model is autore-
gressive integrated moving average (ARIMA);37 however, this type
of model is built around the assumption that future values
resemble past trends with a type of periodic behavior, such as in
financial forecasts.
Since the nature of this problem is often irreversible change

imparted to a sample, the advantages of ARIMA models are poorly
suited. Based on the shortcomings of other models, and recent
successes with LSTMs used to predict time series on other types of
STEM data38, we chose to focus on LSTMs to determine suitability
for this type of problem. Despite their prevalence, there has been
surprisingly little work on the use of LSTMs in electron microscopy,
with limited examples including control of scan generation39 and
segmentation of biological images40. Given that in situ STEM data
are acquired in serial fashion, we aim to evaluate the performance
of LSTM for microscope data, with an eye toward practical
implementation.
Here we describe an LSTM approach for forecasting of in situ

EELS data collected in the STEM, a model we call EELSTM. We have
chosen this technique because it strongly encodes local chemical
state and phase, can be readily quantified using existing
theoretical frameworks, and can be acquired at high speed and
energy resolution41. Prior work has also demonstrated the
potential for real-time ML-based denoising and classification of
in situ EELS data42. We explore the crystalline-to-amorphous phase
transition in the archetypal perovskite oxide SrTiO3 (STO), utilizing
the electron beam itself to drive reduction and associated changes
in core-loss EELS spectra. Understanding such order-disorder
phase transitions is important for emerging technologies, ranging
from solid oxide fuel cells (SOFCs) to sensors in extreme
environments and radiation-hard electronics43. We systematically
explore data preprocessing, model architecture, hyperparameter
optimization, training, and validation relative to ground truth
experimental data. We emphasize that the choice of parameters
provided is not exhaustive, but instead is representative of a
common beam-induced phase transition in complex oxides.
Nonetheless, we show that this model has good predictive power
and may serve as a basis for future model-predictive control
approaches. Finally, we comment on the potential deployment of

this model in emerging autonomous microscope systems and
provide our code to spur adoption of this approach.

RESULTS AND DISCUSSION
The chief aim of the present study is to adapt existing LSTM
models, such as those used for natural language processing44,45

and time series prediction of physical phenomena46–48, to the task
of EELS forecasting. As shown in Fig. 1, the EELSTM model
workflow encompasses four steps: Data Collection, Preprocessing,
Training and Validation, and Inference. In Section “Data Collection”,
we describe the experimental setup and EELS data acquisition,
including considerations for the best model performance. In
Section “Preprocessing”, we review preprocessing strategies
specific to EELS data, resulting from the data collection process,
variability between experiments, and the nature of core-loss data
itself. In Section “Training and Validation”, we describe the training
and validation process, including the relationship between
training inputs and predictions, model transferability, and
temporal correlations. Lastly, in Section “Inference and Bench-
marking”, we discuss possible error metrics and benchmark
performance relative to ground truth experimental data.

Data collection
We have chosen to examine a crystalline STO sample, which will
readily undergo reduction and a crystalline-to-amorphous phase
transformation due to electron beam knock on damage at 300 keV
accelerating voltage. Several datasets were collected by parking
the electron beam on an undamaged part of the sample and then
acquiring time series spectra with a fixed dwell time of 0.08, 0.1,
0.2, 0.4, or 0.8 s px−1, while keeping all other instrument
parameters constant. We observed that consistency in operating
conditions (such as beam energy, dwell time/dose, and sample
configuration) between experiments is paramount, as models
trained on data with specific beam parameters did not perform
well on spectra acquired with differing parameters. This dis-
crepancy arises because EELS intensity depends on dwell time and
the damage rate (and associated phase transition) varies with
dose conditions. We conducted three different experiments under
similar conditions to obtain the training and test datasets. Two
experiments’ worth of data were used to construct the training
dataset, while a third experiment was held back as a test set. Each
experiment contained ~160 spectra, ranging from the first
spectrum with a fresh sample to the final degraded sample
spectrum; each spectrum contained 2048 energy channels. The
plots and MSE values presented in the main text used a dwell time
of 0.4 s px−1, while those shown in the Supplementary used a
dwell time of 0.8 s px−1. This train/test split construction is
important, because the model is able to train on data showing all
stages of the phase transition; if the first portion of a single

Fig. 1 Overview of the EELSTM model workflow. a–d Steps include data collection, preprocessing, training and validation, and inference,
respectively.
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experiment were used to train—and the later portion was then
utilized as the test set—the model would not accurately predict
future spectra in the later phases. This construction also allows for
extrapolation to future experiments, where predictions can be
made independent of the progression of the phase transition. We
note that such calibration runs are important to ensure successful
model forecasting, as we discuss below.

Preprocessing
We next consider data preprocessing, which includes iterative
steps specific to in situ EELS data, as shown in Fig. 1. Initially, we
designed the model to use the raw EELS spectra and trained an
LSTM model for predictions. This method resulted in an
excessively long training phase, with over 30,000 epochs required
for convergence. After further examination of the data and a
review of experimental (domain) considerations, we identified a
variety of preprocessing strategies to improve training and
accuracy. Figure 2 shows an overview of these preprocessing
strategies and we next discuss their rationale, implementation,
and effect on model predictions.

Scaling. The first data preprocessing step required is to scale the
data between 0 and 1. The primary reason for this is that LSTM
networks use several zero-centered or nearly zero-centered
functions, such as sigmoid and hyperbolic tangent34. The
derivatives of these functions diminish greatly outside of this
input range. As a result, training weights receive small updates
based on the gradient when the input data is outside of [0, 1]49.
We can consider several ways to scale the data, knowing that raw
intensity counts range from the thousands to tens of thousands.
The most logical, due to the inherent data structure, is a min-max
scaling where the training set is scaled between 0 and 1 using the
minimum and maximum values across the spectrum. Thus, the
inherent link between energy bins is conserved. Conversely, we
may also use the scikit-learn library MinMaxScaler to scale each
energy bin individually between 0 and 1, so the inherent structure
between energy bins is lost (this is the method represented in Fig.
2a). This latter approach is desirable, since it ensures that a given
energy bin spans the whole range of [0,1], rather than only a
fractional range that would potentially introduce unintended
sensitivities to model weights.

The raw data were scaled using the minimum and maximum
values of one of the training datasets and formatted into the
sequence/output format expected by the LSTM. We then passed
the formatted data through the trained model to make a
prediction and unscaled the predicted result to compare to the
ground truth. We assumed that the second method utilizing scikit-
learn’s MinMaxScaler would preserve signal-to-noise in lower-
intensity regions, but our testing showed that the noise levels
from the predictions were not statistically different. Interestingly,
we observed that both scaling methods yielded similar errors,
indicating that the channel-to-channel relationship did not need
to be maintained for the model to perform optimally. While
performance with scaled data did show an improvement over the
model with raw data, the biggest benefit was faster convergence.
Models were able to train approximately 10× faster, primarily due
to convergence in fewer epochs. This finding demonstrates the
importance of scaling data in a range where the sigmoid and
activation functions have a more significant impact due to
gradient-based weight updates. To evaluate the performance of
this and the following preprocessing steps, we consider the mean
squared error (MSE) and root mean squared error (RMSE) relative
to ground truth, as will be described Section “Inference and
Benchmarking”. As a baseline, the RMSE of the raw data before
any preprocessing is 1958.3. After scaling, performance improved
greatly to a RMSE value of 295.5 ± 40.3 relative to raw spectra.
Finally, it should be noted that, while scaling is the first strategy
implemented for improved performance, it should always be done
only after all other preprocessing steps have been implemented.
For example, if background subtraction is implemented, scaling
should only be done after the background subtraction step.

Peak alignment. Because of the nature of EELS data acquisition, it
is important to account for spectral shifts between experiments
that might influence forecasts. While a systematic shift in core-
loss edge onset is often related to oxidation state, instability in the
microscope high-tension system can also introduce artificial
shifting. To correct for this, low-loss and core-loss data may be
acquired simultaneously and the core-loss data can then be
shifted to account for energy drift throughout the experiment50.
However, not all instruments possess the required spectrometer
hardware and shuttering between energy regimes can add
overhead (slow down) an acquisition, making this approach

Fig. 2 Data preprocessing strategies. a–d Strategies include scaling of spectra, peak alignment between experiments, binning of spectra to
reduce noise, and background subtraction, respectively. Raw spectra are shown in blue and processed spectra are shown in orange.
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difficult to apply during high-speed experimentation.
For simplicity, we treat the entire core-loss spectrum, aiming to

minimize artificial shifts for more accurate prediction and error
metrics.
In order to make a generic alignment for all future data, we use

one of the timesteps from the test spectra as a reference. We
utilize the peak alignment functionality of the Hyperspy Python
library to align all spectra to this reference spectrum51. A hard limit
for spectral shifts can also be applied in the Hyperspy package to
account for spurious energy shifts due to high-tension instability,
while minimizing the overall realignment of spectra. As a result of
shifting peaks, some of the data from the edges of the full spectra
were lost. One of the fundamental characteristics required for
model inputs is consistency between number of channels;
therefore, we cropped all spectra after alignment to ensure
consistent numbers of energy channels. For the data shown in Fig.
2b, the raw spectrum had 2048 channels prior to alignment. After
alignment, which typically lost ≤10 channels, we cropped 74
channels from the beginning and end, yielding a final number of
1900 energy channels. This alignment improved the RMSE
between the predicted and real spectra to 217.9 ± 23.4. We
consider two explanations: first, a shift in energy channels
between a real and predicted spectrum leads to significant
increase in error around regions of interest, such as the Ti L2,3 edge
at ∼456 eV and O K edge at ∼532 eV. Second, the model learns
trends for energy bins as distinct input features; when there is a
shift between the spectra that were used to train the model and
those used for prediction, we are asking for additional extrapola-
tion. While more training datasets covering a wide range of shifts
might eliminate this step, this preprocessing strategy proved
important for more limited amounts of training data.

Binning. We observed that the predicted spectrum was not able
to capture the natural noise in the real spectrum, leading to an
increased error between the prediction and ground truth. Multiple
sources of noise exist in EELS data, including shot noise, gain
noise, read-out noise, and Fano noise52. While shot and Fano noise
arise prior to signal detection, they are influenced by the point
spread function (PSF) of the detector and this should be
considered in generalizing a predictive model to other experi-
ments. Further, both gain and read-out noise are affected by the
choice of spectrometer binning and gain correction. While some
of these parameters can be fixed for a specific prediction, the
intrinsic stochastic nature of noise makes it challenging to predict.
Therefore, we proposed that measured predictive performance

might improve if the training data were less noisy. A typical
method of reducing noise is to average spectra across several
timesteps. We consider two such binning methods: “exclusive
bins” and “rolling bins.” The exclusive bins method averaged every
n spectra (n was typically 3–5) without any overlap; that is, we
averaged n spectra, then shifted forward by n timesteps to
average the next group. This approach made sure to not use any
spectra more than others in the averaging, but was detrimental,
given that the amount of available data was reduced by a factor of
n. The rolling bins method averaged n spectra, then shifted the
timestep forward by 1 to take the next average; this approach
resulted in reusing all spectra n times (except for the very first and
last n spectra), but was advantageous, since the amount of
training data was not significantly reduced (we only lose n
timesteps of data).
Both methods were in fact effective in reducing noise in the

datasets, as shown in Fig. 2c. However, the reduction in training
data, particularly when using the exclusive bins method, actually
yielded worse results (RMSE of 400.8 ± 154.8). This result is
explained by the fact that good performance must have a
sufficient amount of training data for the model to predict well,
and losing so much data was detrimental. To employ this
approach in future studies, one would need to gather significantly

more experimental data to offset the loss of training data. The
rolling bins method improved the RMSE to 241.4 ± 63.7 from the
baseline. However, this improvement is smaller than that seen
from spectrum shifting. When both approaches were combined,
no significant improvement was made to the error and this
strategy was discarded, since it only added to preprocessing time.

Background subtraction. Finally, we consider the natural decrease
of the inelastic scattering background at higher energy losses,
which primarily results from plasmon excitations that can be
described by a well-known power law dependence. This behavior
led to some instances where the predicted signal was shifted
vertically from the actual signal, leading to inflated error between
the predicted and real spectrum. To mitigate this effect on
prediction error, we utilized background subtraction so that all of
the signals started on a comparable baseline, as shown in Fig. 2d.
It was necessary to perform background subtraction before any
scaling, since the background subtraction shifted the entire
baseline.
Best EELS practice dictates specifying the region for background

subtraction to be taken before the edge of interest53,54. This
approach proved problematic for this particular study, since we
aimed to predict the RMSE of an entire spectrum, not just a single
edge of interest. Most compounds contain multiple edges in a
given spectrum and STO specifically contains both the Ti L2,3 and
O K edges. For consistency, we performed the background
subtraction using the region before the Ti L2,3 edge. We
emphasize this done only to evaluate the accuracy of the
prediction and that individual, raw spectra with background
subtraction prior to each edge should be conducted for EELS
quantification. After training the model on background-subtracted
data, we observed decreased performance with higher variability
(RMSE of 392.4 ± 177.4). We also observed that models trained on
this type of data had a greater tendency to overfit. This behavior
may be explained by the fact that background subtraction
constrains the data to a narrower range of values, and after
scaling, the model tends to not extrapolate as well to unseen data,
resulting in an increased likelihood to overfit. The results
highlighted the problem with using background subtraction
when considering the whole spectrum, and this approach would
perhaps be more useful when utilizing different error metrics. This
approach would also be more suitable for modeling only a certain
energy regime, where background subtraction in one region can
be carried out independently from another area of interest.
Therefore, background subtraction was not deemed a necessary
preprocessing step to achieve the best results in the current
implementation. In summary, we can see that individual
preprocessing steps can improve RMSE by nearly 88.9% relative
to using raw spectra, as shown in Table 1.

Training and validation
The generic structure of the LSTM model takes as input a
sequence of time series data and outputs a prediction of a future
timestep, as shown in Fig. 3. We first considered two models: one
that took as input a sequence of whole spectra and predicted a
whole spectrum, or an aggregate model that analyzed input and

Table 1. Changes in RMSE with preprocessing strategy.

Strategy RMSE Improvement (%)

Raw 1958.3 —

Scaling 295.5 84.9

Peak Alignment 217.9 88.9

Binning 400.8 79.5

Background Subtraction 392.4 80.0

N.R. Lewis et al.
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predictions channel-by-channel, followed by recombination of the
individual predictions to form a whole spectrum. Given that each
spectrum contained 2048 energy channels, the second method
required 2048 separate models; this method was discarded
primarily due to its prohibitive computational time and memory,
as well as the positive results using the first approach.
The next consideration for the model revolved around deciding

on a prediction horizon. In time series data, there is often a
correlation between timesteps, and care must be taken to ensure
actionable predictions. If the correlation is too high, the model
may learn to simply predict the last timestep of the input window
as the next timestep, leading to artificially inflated prediction
accuracy. For example, in the “long window, short horizon”
scenario in Fig. 3a, with an 8 timestep window and 1 timestep
horizon, the prediction appears to have extremely high fidelity.
However, this result is not significantly better than simply using
the last spectrum from the input window as the prediction. To
account for this possibility, we performed a Pearson autocorrela-
tion calculation between a spectrum at a given timestep and all
subsequent spectra, as shown in Supplementary Fig. 1. As
anticipated, we observed a high correlation among timesteps
proximal to each other, with a steadily de- creasing correlation at a
further horizon. After ~6–8 timesteps, the correlation between
spectra was statistically insignificant to ensure that the model
would not simply learn the most recent spectrum from the input
regardless of the qualitative similarity, as shown in Supplementary
Fig. 1. For an EELS dwell time of 0.4 s px−1, this corresponds to
∼3 s and is an important consideration for any practical usage.

The length of the input window was optimized along with other
model hyperparameters in the range of 3–15 timesteps, as shown
in Supplementary Table 1. Naturally, a sufficiently long sequence
of spectra must be used to establish the progression of the STO
phase transformation, which can then be used to predict future
timesteps. We observe poor results when a short input window is
used, as shown in the “short window, long horizon” scenario in
Fig. 3b with a 3 timestep window and 8 timestep horizon.
However, we also wish to avoid excessively long input windows to
maintain sensitivity to rapid changes in the data. In the context of
automation, a longer input window leads to more lag from the
point when a control parameter is changed and the system starts
gathering data, increasing the likelihood of inaccurate reaction
tracking. We determined an ideal “long window, long horizon”
scenario as shown in Fig. 3c, with an 8 timestep window and 8
timestep horizon, indicating good prediction with minimal
autocorrelation. Additional hyperparameter optimization was
performed with the Hyperopt Python package, which utilizes
Bayesian optimization to selectively search in spaces where
performance tends to be better. While this approach does not
guarantee a globally optimal hyperparameter set, it does have the
advantage of searching in the most optimal sub-spaces (unless it
gets stuck in a local minimum). We emphasize that further tuning
of the input window and horizon may be necessary depending on
the exact parameters of an EELS experiment and the nature of the
dynamic behavior under study.

Fig. 3 Input window and output horizon forecast scenarios. a “Long window, short horizon” scenario with an eight timestep window and
one timestep horizon, demonstrating deceptively good results due to autocorrelation. b “Short window, long horizon” scenario with a 3
timestep window and 8 timestep horizon, demonstrating poor results. c “Long window, long horizon” scenario, with an 8 timestep window
and 8 timestep horizon, indicating good prediction with minimal autocorrelation. The green lines indicate spectra from the input window, the
blue lines indicate true future spectra to predict, and the orange line indicates spectra predicted by the LSTM. Note that the plots on the right
show only the last spectrum from the input window (in green).
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Inference and benchmarking
Lastly, we consider inference and benchmarking of model
performance at different stages of an STO phase transition. The
inference step (Fig. 1d) takes an input window from a new
experiment (the test set), makes a prediction, and compares it to
the ground truth. Results then iteratively inform data collection
(such as more experiments, adjusting sampling, dose, etc.) and
preprocessing steps (such as background subtraction, binning,
etc.), after which the model is retrained and reevaluated.
Importantly, it is possible to readily transform the output of the
LSTM (in the form of an array) back to a Hyperspy signal to use its
built-in functionality, such as edge quantification and EELS-specific
post-processing. As already mentioned, the primary benchmark-
ing functions used in this study are MSE and RMSE, which were
selected for their straightforward interpretation. However, they are
relatively simplistic, since they treat each energy channel equally;
essentially, the EELS background contributes just as much to the
overall error as a region of interest, such as the Ti L2,3 or O K edges.
In light of this limitation, we also considered additional metrics to
both train the model and evaluate performance, including: cosine
similarity, peak MSE, and weighted MSE. Cosine similarity is a very
common and effective metric for showing similarity between two
vectors. The disadvantage is that our spectra all have very high
cosine similarity (≥0.999), so it is difficult to optimize over this
range. Logarithmic scaling or other strategies to inflate the
difference between 0.999 and 1.0 might be useful, but in the end,
it was discarded. Alternatively, we considered peak MSE as an
EELS-specific objective function, where the predicted and true
signals are taken as input. Hyperspy fitting functions may then be
used to determine peak location, height, and width. The MSE of
those metrics between the predicted and true spectrum is the
objective function. Using this approach, it is possible to
simultaneously evaluate multiple spectral regions by assigning
peaks of location, height, and width= 0 to make up the disparity.
This approach is beneficial because it significantly penalizes
mismatched number of peaks more than simply wrong peaks.
However, it completely ignores the background and so does not
lead to interpretable spectra. Finally, weighted MSE is a method
that specifies which regions are more important and then
multiplies the error of those regions by an additional factor to
lend additional penalization in the objective function55. While this
approach should theoretically reward better performance in key
regions of interest, we found that the overall performance was
comparable to standard MSE; since this did not improve
interpretability, the final evaluations used standard MSE and
RMSE. While MSE and RMSE have limitations, they are directly
interpretable: a RMSE of 200 indicates that, on average, each
energy channel is 200 intensity counts off, whether it is in a region
of interest or background. Using these metrics also allows us to
more readily compare values with future research, including
different forecasting models, materials with different regions of
interest, or cropped spectra. The error values reported throughout
this study represent error values between the ground truth raw
data and the model prediction after any post-processing is done
to revert the prediction back to raw data format, such as the
inverse scaling transform.
We can now evaluate the performance of the forecasting model

on in situ EELS data taken at various stages of an order-disorder
phase transition in STO. Figure 4 shows prediction results on a
representative EELS dataset, using peak alignment and signal
scaling as discussed in Section “Preprocessing,” and the set of
hyperparameters determined in Supplementary Table 1. Predic-
tions are made using an 8 timestep window, with an 8 timestep
horizon, and then overlaid against ground truth (raw) data. We
first consider Fig. 4a, which shows the initial stages (t ≈ 15 s) of the
phase transition across the whole spectrum and two regions of
interest, the Ti L2,3 and O K edges. We note that because both

edges are collected simultaneously, relative chemical shifts can
still be accurately measured. We observe a good prediction across
the entire spectrum (MSE= 216.7) relative to the ground truth
data, with the added benefit of denoising relative to the raw
experimental data. Focusing on the Ti L2,3, we observe the
expected crystal field splitting of the white lines into t2g and eg
contributions, indicating a predominant Ti4+ valence state within
the resolution of the measurement. Similarly, we observe
expected features in the O K edge consistent with this valence
state56. Next, we consider a later stage in the phase transition,
shown in Fig. 4b. At this time (t ≈ 60 s), the sample is heavily
reduced by the beam and increasingly amorphous. The substantial
presence of Ti3+ is reflected in the increasing degeneracy of the Ti
L2,3 edge states and merging of the features in the L3 and L2 peaks.
Similarly, there is less definition and a general flattening of the O K
edge features, again consistent with reduction57. Here again, we
observe strong predictive capability across the full spectrum
(MSE= 181.4), pointing to the ability of the model to effectively
capture the future state of a phase transition.
We have described the implementation of an LSTM model for

forecasting of EELS spectra during an in situ phase transition in
STO. We find that the model possesses good predictive power
relative to ground truth experimental data, but that there are
important pre-processing strategies and forecast parameters that
must be considered. Moving forward, it will be important to
further evaluate model accuracy against prediction horizon. It will
also be necessary to explore error metrics that improve the
interpretability of results and consider models that account for the
physics of different beam parameters or materials. We may
envision other scenarios in which this model may be useful. For
example, a portion of a phase transition may be triggered and
then stopped to minimize sample changes, while the model may
be used to predict the completed state of the reaction.
Alternatively, calibration using a sacrificial part of the sample
would allow us to define control envelopes for a self-driving
experiment to minimize unnecessary repetition and capture
underlying mechanisms.
As already described, a central challenge of in situ electron

microscopy is the ability to anticipate and respond to changing
noisy and high-velocity data. Forecasting models of the kind
shown in this work will find important usage in emerging self-
driving microscope platforms. For implementation in emerging AI
systems, we envision the EELSTM forecasting model should be
running continuously on a rolling buffer of EELS data and
implemented in model-predictive control frameworks for closed-
loop feedback18. The ability to run these models in real-time and
predict a future state of a chemical reaction will allow for
optimization of experimental parameters, such as beam electron
dose, sampling, and current, which are captured metadata
alongside the EELS spectra. Such feedback from the model
forecast may then be implemented in emerging closed-loop
instrument controllers that can respond faster than any human. In
turn, these capabilities will realize richer, more accurate studies of
fundamental phase transitions for fundamental studies of crystal
nucleation and growth, battery cycling, mechanical testing, and
quantum behavior.

METHODS
Experimental materials and methods
A cross-sectional STEM sample of a SrTiO3 single-crystal
substrate was prepared using a FEI Helios NanoLab DualBeam
Focused Ion Beam (FIB) microscope and a standard lift-out
procedure. STEM data were collected using a probe-corrected
JEOL GrandARM-300F microscope operating at 300 kV, with a
convergence semi-angle of 29.7 mrad and estimated ~230 pA
probe current. EELS data was acquired using a GIF Quantum
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665 spectrometer, with a spectrometer acceptance angle range
of 113–273 mrad, a dispersion of 0.1 eV ch−1, and a dwell time
ranging from 0.08–0.8 s px−1. Spectra were binned 130× in the
non-dispersive direction. Spectra were acquired by parking the
probe on a different pristine region of the crystal for each
experiment and then acquiring spectra continuously for
60–90 s.

Computational methods
Model development was done in Python 3.8. The Hyperspy 1.6.5
library was used to read and perform qualitative and quantitative
analysis of EELS spectra. Numpy 1.19.4, pandas 1.2.0, scikit-learn
1.0.2, and matplotlib 3.2 were utilized for data processing,
formatting, and visualization. Keras 2.4.3 and Tensorflow 2.4.1
were used for the LSTM model. Many iterations of the model were

Fig. 4 Optimized LSTM prediction of an STO order-disorder phase transition. a Timestep near the start of the experiment (t ≈ 15 s), where
the sample is crystalline and nearly fully oxidized. b Timestep near the end of an experiment (t ≈ 60 s), where the sample is largely amorphous
and heavily reduced. The blue line indicates the real spectrum at an 8 timestep horizon, while the orange indicates the LSTM model output.
Shaded regions of each full spectrum indicate the Ti L2,3 and O K edges.
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conducted using the Hyperopt library, yielding the optimized
hyperparameters shown in Supplementary Table 1. Graphical user
interface (GUI) devel- opment, as described in Supplementary Fig.
3, was implemented in Python 3.8. The Flask 2.0.1 and sqlalchemy
1.4.7 packages were used for the framework of the GUI.

SUPPLEMENTARY AVAILABILITY
Supplementary containing details on hyperparameters, autocor-
relation analysis, analysis of a different dose rate, and the GUI is
available.
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The EELS data used in this study are available on FigShare at https://doi.org/10.6084/
m9.figshare.20288730.v1.

CODE AVAILABILITY
The code along with Jupyter notebooks used in this study is available on Gitlab at
https://github.com/pnnl/EELSTM.

Received: 20 July 2022; Accepted: 14 November 2022;

REFERENCES
1. Cifuentes, J., Marulanda, G., Bello, A. & Reneses, J. Air temperature forecasting

using machine learning techniques: a review. Energies 13, 4215 (2020).
2. Vivas, E., Allende-Cid, H. & Salas, R. A systematic review of statistical and machine

learning methods for electrical power forecasting with reported mape score.
Entropy 22, 1412 (2020).

3. Chatzis, S. P., Siakoulis, V., Petropoulos, A., Stavroulakis, E. & Vlachogiannakis, N.
Forecasting stock market crisis events using deep and statistical machine
learning techniques. Expert Syst. Appl. 112, 353–371 (2018).

4. Tsolaki, K., Vafeiadis, T., Nizamis, A., Ioannidis, D. & Tzovaras, D. Utilizing machine
learning on freight transportation and logistics applications: a review. ICT Express.
https://doi.org/10.1016/j.icte.2022.02.001 (2022).

5. Schwarting, W., Alonso-Mora, J. & Rus, D. Planning and decision-making for
autonomous vehicles. Annu. Rev. Control Robot. Auton. Syst. 1, 187–210 (2018).

6. Rosique, F., Navarro, P. J., Fern´andez, C. & Padilla, A. A systematic review of
perception system and simulators for autonomous vehicles research. Sensors 19,
648 (2019).

7. Battineni, G., Sagaro, G. G., Chinatalapudi, N. & Amenta, F. Applications of
machine learning predictive models in the chronic disease diagnosis. J. Pers. Med.
10, 21 (2020).

8. Lalmuanawma, S., Hussain, J. & Chhakchhuak, L. Applications of machine learning
and artificial intelligence for covid-19 (sars-cov-2) pandemic: a review. Chaos
Solitons Fractals 139, 110059 (2020).

9. Ghorpade, P. et al. Flood forecasting using machine learning: a review. In: Proc.
8th International Conference on Smart Computing and Communications (ICSCC)
32–36 (IEEE, 2021).

10. Tahmasebi, P., Kamrava, S., Bai, T. & Sahimi, M. Machine learning in geo- and
environmental sciences: from small to large scale. Adv. Water Resour. 142, 103619
(2020).

11. Hatfield, P. W. et al. The data-driven future of high-energy-density physics. Nature
593, 351–361 (2021).

12. Radovic, A. et al. Machine learning at the energy and intensity frontiers of particle
physics. Nature 560, 41–48 (2018).

13. Zhang, C. et al. Recent progress of in situ transmission electron microscopy for
energy materials. Adv. Mater. 1904094, 1904094 (2019).

14. Zheng, H., Meng, Y. S. & Zhu, Y. Frontiers of in situ electron microscopy. MRS Bull.
40, 12–18 (2015).

15. Taheri, M. L. et al. Current status and future directions for in situ transmission
electron microscopy. Ultramicroscopy 170, 86–95 (2016).

16. Stach, E. et al. Autonomous experimentation systems for materials development:
a community perspective. Matter 4, 2702–2726 (2021).

17. Spurgeon, S. R. et al. Towards data-driven next-generation transmission electron
microscopy. Nat. Mater. 20, 274–279 (2021).

18. Olszta, M. et al. An automated scanning transmission electron microscope guided
by sparse data analytics. Microsc. Mircroanal. 28, 1611–1621 (2022).

19. Liu, Y. et al. Experimental discovery of structure–property relationships in ferro-
electric materials via active learning. Nat. Mach. Intell. 4, 341–350 (2022).

20. Kalinin, S. V. et al. Automated and autonomous experiments in electron and
scanning probe microscopy. ACS Nano 15, 12604–12627 (2021).

21. Groschner, C. K., Choi, C. & Scott, M. C. Machine learning pipeline for segmen-
tation and defect identification from high-resolution transmission electron
microscopy data. Microsc. Mircroanal. 27, 549–556 (2021).

22. Sadre, R., Ophus, C., Butko, A. & Weber, G. H. Deep learning segmentation of
complex features in atomic-resolution phase-contrast transmission electron
microscopy images. Microsc. Mircroanal. 27, 804–814 (2021).

23. Horwath, J. P., Zakharov, D. N., M´egret, R. & Stach, E. A. Understanding important
features of deep learning models for segmentation of high-resolution transmis-
sion electron microscopy images. NPJ Comput. Mater. 6, 108 (2020).

24. Zhang, C., Feng, J., DaCosta, L. R. & Voyles, P. Atomic resolution convergent beam
electron diffraction analysis using convolutional neural networks. Ultramicroscopy
210, 112921 (2020).

25. Xu, W. & LeBeau, J. A deep convolutional neural network to analyze position
averaged convergent beam electron diffraction patterns. Ultramicroscopy 188,
59–69 (2018).

26. Madsen, J. et al. A deep learning approach to identify local structures in atomic-
resolution transmission electron microscopy images. Adv. Theory Simul. 1,
1800037 (2018).

27. Kaufmann, K., Lane, H., Liu, X. & Vecchio, K. S. Efficient few-shot machine learning
for classification of EBSD patterns. Sci. Rep. 11, 8172 (2021).

28. Doty, C. et al. Design of a graphical user interface for few-shot machine learning
classification of electron microscopy data. Comput. Mater. Sci. 203, 111121 (2022).

29. Akers, S. et al. Rapid and flexible segmentation of electron microscopy data using
few-shot machine learning. NPJ Comput. Mater. 7, 187 (2021).

30. Yu, L. et al. Unveiling the microscopic origins of phase transformations: An in situ
term perspective. Chem. Mater. 32, 639–650 (2020).

31. Ede, J. M. Deep learning in electron microscopy. Mach. Learn. Sci. Technol. 2,
011004 (2021).

32. Lim, B. & Zohren, S. Time-series forecasting with deep learning: a survey. Philos.
Trans. R. Soc. A 379, 20200209 (2021).

33. Zeng, A., Chen, M., Zhang, L. & Xu, Q. Are transformers effective for time series
forecasting? Preprint at: http://arxiv.org/abs/2205.13504 (2022).

34. Yu, Y., Si, X., Hu, C. & Zhang, J. A review of recurrent neural networks: LSTM cells
and network architectures. Neural Comput. 31, 1235–1270 (2019).

35. Robertson, C., Wilmoth, J. L., Retterer, S. & Fuentes-Cabrera, M. Performing video
frame prediction of microbial growth with a recurrent neural network. Preprint
available at: https://arxiv.org/abs/2205.05810 (2022).

36. Agar, J. C. et al. Revealing ferroelectric switching character using deep recurrent
neural networks. Nat. Commun. 10, 4809 (2019).

37. Siami-Namini, S., Tavakoli, N. & Namin, A. S. A comparison of ARIMA and lSTM in
forecasting time series. In Proc. 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), 1394–1401 (IEEE, 2018).

38. Fu, W. et al. Deep-learning-based prediction of nanoparticle phase transitions
during in situ transmission electron microscopy. Preprint available at: https://
arxiv.org/abs/2205.11407 (2022).

39. Ede, J. M. Adaptive partial scanning transmission electron microscopy with
reinforcement learning. Mach. Learn.: Sci. Technol. 2, 045011 (2021).

40. Stollenga, M. F., Byeon, W., Liwicki, M. & Schmidhuber, J. Parallel multi-
dimensional LSTM, with application to fast biomedical volumetric image seg-
mentation. 28 (Curran Associates, Inc., 2015).

41. Spurgeon, S. & Chambers, S. Atomic-Scale Characterization of Oxide Interfaces
and Superlattices Using Scanning Transmission Electron Microscopy (Elsevier,
2018).

42. Pate, C. M., Hart, J. L. & Taheri, M. L. Rapideels: machine learning for denoising and
classification in rapid acquisition electron energy loss spectroscopy. Sci. Rep. 11,
19515 (2021).

43. Spurgeon, S. R. Order-disorder behavior at thin film oxide interfaces. Curr. Opin.
Solid State Mater. Sci. 24, 100870 (2020).

44. Yao, L. & Guan, Y. An improved LSTM structure for natural language processing.
In: Proceedings of the IEEE International Conference of Safety Produce Informati-
zation, IICSPI 2018 565–569 (2019).

45. Ghosh, S. et al. Contextual LSTM (CLSTM) models for Large scale NLP tasks.
Preprint available at: https://arxiv.org/abs/1602.06291v2 (2016).

46. Park, S. H., Kim, B., Kang, C. M., Chung, C. C. & Choi, J. W. Sequence-to-sequence
prediction of vehicle trajectory via LSTM encoder-decoder architecture. In Proc.
IEEE Intelligent Vehicles Symposium 2018, 1672–1678 (2018).

47. Yang, Y. et al. A CFCC-LSTM model for sea surface temperature prediction. IEEE
Trans. Geosci. Remote Sens. 15, 207–211 (2018).

48. Ghimire, S. et al. Stacked LSTM sequence-to-sequence autoencoder with feature
selection for daily solar radiation prediction: a review and new modeling results.
Energies 15, 1061 (2022).

N.R. Lewis et al.

8

npj Computational Materials (2022)   252 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.6084/m9.figshare.20288730.v1
https://doi.org/10.6084/m9.figshare.20288730.v1
https://github.com/pnnl/EELSTM
https://doi.org/10.1016/j.icte.2022.02.001
http://arxiv.org/abs/2205.13504
https://arxiv.org/abs/2205.05810
https://arxiv.org/abs/2205.11407
https://arxiv.org/abs/2205.11407
https://arxiv.org/abs/1602.06291v2


49. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9,
1735–1780 (1997).

50. Gubbens, A. et al. The gif quantum, a next-generation post-column imaging
energy filter. Ultramicroscopy 110, 962–970 (2010).

51. de la Pen˜a, F. et al. Hyperspy/hyperspy: Release v1.7.1 (2022).
52. Hart, J. L. et al. Direct detection electron energy-loss spectroscopy: a method to

push the limits of resolution and sensitivity. Sci. Rep. 7, 8243 (2017).
53. Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope

(Springer US, 2012).
54. Egerton, R. & Malac, M. Improved background-fitting algorithms for ionization

edges in electron energy-loss spectra. Ultramicroscopy 92, 47–56 (2002).
55. Lewis, N. R., Hedengren, J. D. & Haseltine, E. L. Hybrid dynamic optimization

methods for systems biology with efficient sensitivities. Process 3, 701–729 (2015).
56. Mosk, A. et al. Atomic-scale imaging of nanoengineered oxygen vacancy profiles

in SrTiO3. Nature 430, 657–661 (2004).
57. Spurgeon, S. R. et al. Asymmetric lattice disorder induced at oxide interfaces. Adv.

Mater. Interfaces 7, 1901944 (2020).

ACKNOWLEDGEMENTS
The authors would like to thank Dr. Jenna (Bilbrey) Pope for reviewing the
manuscript. C.D., B.E.M., S.A., and S.R.S. were supported by the Chemical Dynamics
Initiative/Investment, under the Laboratory Directed Research and Development
(LDRD) Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-
program national laboratory operated for the U.S. Department of Energy (DOE) by
Battelle Memorial Institute under Contract No. DE-AC05-76RL01830. Experimental
sample preparation was performed at the Environmental Molecular Sciences
Laboratory (EMSL), a national scientific user facility sponsored by the Department
of Energy’s Office of Biological and Environmental Research and located at PNNL.
EELS data was collected in the Radiological Microscopy Suite (RMS), located in the
Radiochemical Processing Laboratory (RPL) at PNNL. N.L., Y.J., X.T., and V.S. were
supported by the Data Intensive Research Enabling Clean Technology (DI- RECT)
National Science Foundation (NSF) National Research Traineeship (DGE-1633216), the
State of Washington through the University of Washington (UW) Clean Energy
Institute and the UW eScience Institute.

AUTHOR CONTRIBUTIONS
S.A. and S.R.S. conceived and developed the project plan. N.L., Y.J., X.T., V.S., C.D., and S.A.
implemented the ML approach. B.E.M. prepared the STEM sample and S.R.S. performed
EELS analysis. All authors contributed to the writing and editing of the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-022-00940-2.

Correspondence and requests for materials should be addressed to Steven R.
Spurgeon.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© Battelle Memorial Institute 2022

N.R. Lewis et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)   252 

https://doi.org/10.1038/s41524-022-00940-2
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Forecasting of in�situ electron energy loss spectroscopy
	Introduction
	Results and discussion
	Data collection
	Preprocessing
	Scaling
	Peak alignment
	Binning
	Background subtraction

	Training and validation
	Inference and benchmarking

	Methods
	Experimental materials and methods
	Computational methods

	Supplementary availability
	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




